Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Из получают фенол. Фенол: свойства и технология производства

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

Фенолы – это производные аренов, у которых один или несколько атомов водорода ароматического кольца замещены на ОН-группу.

Классификация.

1. Одноатомные фенолы:

2. Многоатомные фенолы:

Физические свойства:

Фенол и его низшие гомологи – бесцветные низкоплавкие кристаллические вещества или жидкости с характерным запахом.

Фенол умеренно растворим в воде. Фенол способен образовывать водородные связи, что лежит в основе его антисептических свойств. Водные растворы фенола вызывают ожоги тканей. Разбавленный водный раствор фенола называется карболовой кислотой. Фенол – токсичен, токсичность гомологов фенола уменьшается, бактерицидная активность увеличивается по мере усложнения алкильного радикала.

Способы получения фенолов

1. Из каменноугольной смолы.

2. Кумольный метод

3. Сплавление солей ароматических сульфокислот с щелочью:

4. Разложение солей диазония:

5. Гидролиз галогенпроизводных

§11. Химические свойства фенолов .

1. Кислотные свойства: фенолы образуют соли:

Фенол – более слабая кислота, чем угольная Н 2 СО 3:

2. Реакции с участием ОН-группы.

а) алкилирование (образование простых эфиров)

б) ацилирование (образование сложных эфиров):

3. Реакции замещения ОН-группы:

Фенол с NH 3 и R – NH 2 не взаимодействует.

4. Реакции электрофильного замещения, характерные для аренов.

Замещение протекает быстрее, чем у бензола. ОН-группа направляет новый заместитель в орто- и пара-положения.

а) галогенирование (обесцвечивание бромной воды – качественная реакция на фенол):

б) нитрование

в) сульфирование:

5. Реакции конденсации

а) с формальдегидом

б) с фталевым ангидридом

6. Окисление

а) на воздухе белые кристаллы фенола розовеют;

б) фенол с раствором FeCl 3 дает красно-фиолетовое окрашивание;

крезол – голубое окрашивание;

в) окисление сильными окислителями

7. Восстановление

8. Карбоксилирование (реакция Кольбе – Шмитта):

Применение

1. Фенол применяется в производстве фенолформальдегидных смол, капролактама, пикриновой кислоты, красителей, инсектицидов, лекарственных средств.

2. Пирокатехин и его производные используются в производстве лекарственных средств (получен синтетический гормон – адреналин) и душистых веществ.

3. Резорцин применяют в синтезе красителей; в медицине в качестве дезинфицирующего средства.

Экспериментальная часть

Опыт 1 . Влияние радикала и количества гидроксильных групп на растворимость спиртов.

В три пробирки внесите 4-5 капель этилового, изоамилового спиртов и глицерина. В каждую пробирку добавьте по 5-6 капель воды, взболтайте. Что наблюдали?

Опыт 2. Обнаружение воды в этиловом спирте и его обезвоживание.

В сухую пробирку внесите 10 капель этилового спирта, добавьте немного обезвоженного сульфата меди, тщательно перемешайте, дайте отстояться. Если спирт содержит воду, осадок сульфата меди окрасится в голубой цвет вследствии образования медного купороса СuSO 4 · 5H 2 O. Сохраните обезвоженный спирт для дальнейшего опыта.

Опыт 3. Образование этилата натрия.

Поместите в сухую пробирку маленький кусочек натрия, добавьте 3 капли обезвоженного этилового спирта (из предыдущего опыта) и закройте отверстие пробирки пальцем. Тут же начинается выделение водорода.

По окончании реакции, не отрывая пальца от отверстия пробирки, поднесите ее к пламени горелки. При открытии пробирки водород воспламеняется с характерным звуком, образуя колечко голубоватого цвета. На дне пробирки остается беловатый осадок этилата натрия или его раствор.

При добавлении в пробирку 1 капли спиртового раствора фенолфталеина появляется красное окрашивание.

Напишите уравнения протекающих реакций.

Опыт 4. Окисление этилового спирта хромовой смесью.

Введите в пробирку 3-4 капли этилового спирта. Добавьте 1 каплю 2н раствора серной кислоты и 2 капли 0,5н раствора бихромата калия. Полученный оранжевый раствор нагрейте над пламенем горелки до начала изменения цвета. Обычно уже через несколько секунд цвет раствора становится синевато-зеленым. Одновременно ощущается характерный запах уксусного альдегида, напоминающий запах яблок. Метод можно применять для распознавания первичных и вторичных спиртов.

Напишите уравнения реакций.

Опыт 5. Получение этилацетата.

В сухую пробирку поместите немного порошка обезвоженного ацетата натрия (высота слоя около 2мм) и 3 капли этилового спирта. Добавьте 2 капли концентрированной серной кислоты и нагрейте осторожно над пламенем горелки. Через несколько секунд появляется характерный приятный освежающий запах уксусноэтилового эфира.

Уравнения реакции:

СН 3 С(О)ОNа + НОSО 3 Н NаНSО 4 + СН 3 С(О)ОН

С 2 Н 5 ОН + НОSО 3 Н Н 2 О + С 2 Н 5 ОSО 3 Н

СН 3 С(О)ОН + НОSО 3 Н Н 2 SО 4 + СН 3 С(О)О С 2 Н 5

Опыт 6. Реакция глицерина с гидроксидом меди (II) в щелочной среде.

Поместите в пробирку 3 капли 0,2н раствора СuSO 4 , 2 капли 2н раствора NаОН и перемешайте. Появляется студенистый осадок гидроксида меди (II):

При нагревании в щелочной среде до кипения полученный гидроксид

меди (II) разлагается. Это обнаруживается по выделению черного осадка оксида меди (II):

Повторите опыт, но перед кипячением гидроксида меди (II) добавьте в пробирку 1 каплю глицерина. Взболтайте. Нагрейте до кипения полученный раствор и убедитесь в том, что раствор глицерата меди при кипячении не разлагается. Здесь образуется хелатное соединение

Опыт 7. Образовавние акролеина из глицерина.

Поместите в пробирку 3-4 кристалла бисульфата калия и 1 каплю глицерина. Нагрейте на пламени горелки. Признаком начавшегося разложения глицерина служит побурение жидкости в пробирке и появление тяжелых паров образующегося акролеина, обладающего очень резким запахом.

Опыт 8. Растворимость фенола в воде.

Поместите в пробирку 1 каплю жидкого фенола, добавьте 1 каплю воды и

взболтайте. Получится мутная жидкость – эмульсия фенола. При стоянии

такая эмульсия расслаивается, причем внизу будет раствор воды в феноле,

или жидкий фенол, а вверху – раствор фенола в воде, или карболовая вода.

Прибавляйте по каплям воду, каждый раз встряхивая пробирку, пока не

получится прозрачный раствор фенола в воде. Сохраните полученную

фенольную воду для последующих опытов.

Опыт 9 .Цветные реакции на фенольную воду.

Поместите в пробирку 3 капли прозрачной фенольной воды и добавьте 1 каплю 0,1н раствора FeCl 3 – появляется фиолетовое окрашивание.

Более чувствительной реакцией на фенол является цветная индофеноловая

Поместите в пробирку 1 каплю прозрачной карболовой воды. Добавьте к ней 3 капли 2н раствора NН 4 ОН и затем 3 капли насыщенного раствора бромной воды. Через несколько секунд на белом фоне бумаги можно заметить синее окрашивание, постепенно увеличивающееся за счет образования красящего вещества – индофенола.

Опыт 10. Образование трибромфенола.

Поместите в пробирку 3 капли бромной воды и добавьте 1 каплю прозрачной карболовой воды. Фенолы со свободными орто- и пара-положениями обесцвечивают бромную воду и образуют при этом продукты замещения, которые обычно выпадают в осадок.

Опыт 11. Доказательство кислотного характера фенола.

К остатку фенольной воды добавьте еще 1 каплю фенола и встряхните. К вновь полученной эмульсии добавьте 1 каплю 2н раствора NаОН. Моментально образуется прозрачный раствор фенолята натрия, так как он хорошо растворяется в воде.

§10. Задачи для самостоятельного решения .

1. Напишите структурные формулы следующих соединений:

3-метил-2-пентанол; 2-метил-3-бутин-2-ол; 1-фенилпропанол-1.

2. Реакцией Гриньяра получите следующие спирты:

1) 2-метил-3-пентанол;

2) 2,3-диметил-3-пентанол;

3) 2,2-диметил-1-пропанол.

3. Получите гидратацией соответствующих этиленовых углеводородов

следующие спирты:

а) 2-метилпентанол-2; б) 3,3-диметилбутанол-2.

4. Напишите реакции окисления вторичного бутилового спирта;

2-метилбутанола-1.

5. Подвергните 2-пентанол дегидратации, затем продукт реакции окислите водным раствором перманганата калия. Полученное соединение обработайте уксусной кислотой. Напишите уравнения реакций и назовите все продукты.

6. Получите фенол из бензола и 1-бутена через стадию образования гидроперекиси втор.бутила.

7. Опишите схему следующих превращений:

8. Расположите следующие соединения в порядке убывания кислотных свойств:

Фенолы - производные ароматических углеводородов, в состав которых могут входить одна или несколько гидроксильных групп, соединенных с бензольным кольцом.

Как называть фенолы?

По правилам ИЮПАК сохраняется название «фенол ». Нумерация атомов идет от атома , который непосредственно связан с гидрокси-группой (если она - старшая) и нумеруют так, чтобы заместители получили наименьший номер.

Представитель - фенол - С 6 Н 5 ОН :

Строение фенола.

У атома кислорода на внешнем уровне находится неподеленная электронная пара, которая «втягивается» в систему кольца (+М-эффект ОН -группы). В результате могут возникнуть 2 эффекта:

1) повышение электронной плотности бензольного кольца в положения орто- и пара-. В основном, такой эффект проявляется в реакциях электрофильного замещения.

2) уменьшается плотность на атоме кислорода, вследствие чего связь О-Н ослабляется и может рваться. Эффект связан с повышенной кислотности фенола по сравнению с предельными спиртами.

Монозамещенные производные фенола (крезол) могут быть в 3х структурных изомерах:

Физические свойства фенолов.

Фенолы - кристаллические вещества при комнатой температуре. Плохо растворимы в холодной воде , но хорошо - в горячей и в водных растворах щелочей. Обладают характерным запахом. Вследствие образования водородных связей, обладают высокой температурой кипения и плавления.

Получение фенолов.

1. Из галогенбензолов. При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, который после взаимодействия с кислотой , превращается в фенол:

2. Промышленный способ: при каталитическом окислении кумола на воздухе получается фенол и ацетон:

3. Из ароматических сульфокислот с помощью сплавления с щелочами. Чаще проводят реакцию для получения многоатомных фенолов:

Химические свойства фенолов.

р -орбиталь атома кислорода образует с ароматическим кольцом единую систему. Поэтому электронная плотность на атоме кислороде уменьшается, в бензольном кольце - увеличивается. Полярность связи О-Н повышается, и водород гидроксильной группы становится более реакционоспособным и легко может быть замещен атомом металла даже при действии щелочей.

Кислотность фенолов выше, чем у спиртов, поэтому можно проводить реакции:

Но фенол - слабая кислота. Если через его соли пропускать углекислый или сернистый газ, то выделяется фенол, что доказывает, что угольная и сернистая кислота являются более сильными кислотами:

Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются - при введении II.

2) Образование сложных эфиров. Процесс протекает при воздействие хлорангидридов:

3) Реакция электрофильного замещения. Т.к. ОН -группа является заместителем первого рода, то реакционная способность бензольного кольца в орто- и пара- положениях повышается. При действии на фенол бромной воды наблюдается выделение осадка - это качественная реакция на фенол:

4) Нитрование фенолов. Реакцию проводят нитрирующей смесью, в результате чего образуется пикриновая кислота:

5) Поликонденсация фенолов. Реакция протекает под воздействии катализаторов:

6) Окисление фенолов. Фенолы легко окисляются кислородом воздуха:

7) Качественной реакцией на фенол является воздействие раствора хлорида железа и образование комплекса фиолетового цвета.

Применение фенолов.

Фенолы используют при получении фенолформальдегидных смол, синтетических волокон, красителей и лекарственных средств, дезинфицирующих веществ. Пикриновая кислота используется в качестве взрывчатых веществ.

Спирты - органические соединения, в состав молекул которых входит одна или несколько гидроксильных групп, соединенных с углеводородным радикалом.

По числу гидроксильных групп в молекуле спирты делятся на одноатомные, двухатомные трехатомные и т. д.


Одноатомные спирты

Общая формула одноатомных спиртов - R—OH.

По типу углеводородного радикала спирты делятся на предельные, непредельные и ароматические.

Общая формула предельных одноатомных спиртов - C n N 2n +1 —OH.

Органические вещества, содержащие в молекуле гидроксильные группы, непосредственно связанные с атомами углерода бензольного кольца называются фенолами. Например, C 6 H 5 —OH - гидроксобензол (фенол).

По типу атома углерода, с которым связана гидроксильная группа, различают первичные (R—CH 2 —OH), вторичные (R—CHOH—R") и третичные (RR"R""C—OH) спирты.

C n N 2n+2 O - общая формула и предельных одноатомных спиртов, и простых эфиров.

Предельные одноатомные спирты изомерны простым эфирам - соединениям с общей формулой R—O—R".

Изомеры и гомологи

г CH 3 OH
метанол
CH 3 CH 2 OH
этанол
CH 3 OCH 3
диметиловый эфир
CH 3 CH 2 CH 2 OH
пропанол-1

пропанол-2
CH 3 OCH 2 CH 3
метилэтиловый эфир
CH 3 (CH 2) 3 OH
бутанол-1

бутанол-2

2-метил-пропанол-2

2-метил-пропанол-1
CH 3 OCH 2 CH 2 CH 3
метилпропиловый эфир
CH 3 CH 2 OCH 2 CH 3
диэтиловый эфир
и з о м е р ы

Для спиртов характерна структурная изомерия (изомерия углеродного скелета, изомерия положения заместителя или гидроксильной группы), а также межклассовая изомерия.

Алгоритм составления названий одноатомных спиртов

  1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, с одним из которых связана функциональная группа.
  2. Пронумеруйте атомы углерода в главной цепи, начиная с того конца, к которому ближе функциональная группа.
  3. Назовите соединение по алгоритму для углеводородов.
  4. В конце названия допишите суффикс -ол и укажите номер атома углерода, с которым связана функциональная группа.

Физические свойства спиртов во многом определяются наличием между молекулами этих веществ водородных связей:

С этим же связана и хорошая растворимость в воде низших спиртов.

Простейшие спирты - жидкости с характерными запахами. С увеличением числа атомов углерода температура кипения возрастает, а растворимость в воде падает. Температура кипения у первичных спиртов больше, чем у вторичных спиртов, а у вторичных - больше, чем у третичных. Метанол крайне ядовит.

Химические свойства спиртов

Получение спиртов

Многоатомные спирты

Примерами многоатомных спиртов является двухатомный спирт этандиол (этиленгликоль) HO—CH 2 —CH 2 —OH и трехатомный спирт пропантриол-1,2,3 (глицерин) HO—CH 2 —CH(OH)—CH 2 —OH.

Это бесцветные сиропообразные жидкости, сладкие на вкус, хорошо растворимы в воде. Этиленгликоль ядовит.

Химические свойства многоатомных спиртов по большей части сходны с химическими свойствами одноатомных спиртов, но кислотные свойства из-за влияния гидроксильных групп друг на друга выражены сильнее.

Качественной реакцией на многоатомные спирты является их реакция с гидроксидом меди(II) в щелочной среде, при этом образуется ярко-синие растворы сложных по строению веществ. Например, для глицерина состав этого соединения выражается формулой Na 2 .

Фенолы

Важнейшим представителем фенолов является фенол (гидроксобензол, старые названия - гидроксибензол, оксибензол) C 6 H 5 —OH.

Физические свойства фенола: твердое бесцветное вещество с резким запахом; ядовит; при комнатной температуре заметно растворим в воде, водный раствор фенола называют карболовой кислотой.

Химические свойства

Задачи и тесты по теме "Тема 4. "Спирты. Фенолы"."

  • Спирты - Органические вещества 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

  • Классификация веществ - Классы неорганических веществ 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Кристаллические решётки - Строение вещества 8–9 класс
    Проверьте, умеете ли Вы производить расчеты по уравнениям реакций с учетом выхода продукта.

    Пример. Определите объем этилена, который можно получить при дегидратации 92 г этилового спирта, если выход продукта составляет 50 %.

    Ответ: 22,4 л

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 10 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 10 кл. М., Просвещение, 2001.
    • Г. Г. Лысова. Опорные конспекты и тесты по органической химии. М., ООО "Глик плюс", 1999.

Похожие публикации