Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Характеристика рассеяния. Определение характеристик явления рассеяния К характеристикам рассеяния не относится

К основным статистическим характеристикам ряда измерений (вариацион­ного ряда) относятся характеристики положения (средние характе­ристики, или центральная тенденция выборки ); характеристики рассеяния (ва­риации, или колеблемости ) и характеристики формы распределения.

К характеристикам положения относятся среднее арифметическое значе­ние (среднее значение ), мода и медиана.

К характеристикам рассеяния (вариации, или колеблемости ) относятся: размах вариации , дисперсия , среднее квадратическое (стандартное ) отклонение , ошибка средней арифметической (ошибка средней ), коэффициент вариации и др.

К характеристикам формы относятся коэффициент асимметрии, мера ско­шенности и эксцесс.

Характеристики положения

Среднее арифметическое значение – одна из основных характеристик вы­борки.

Она, как и другие числовые характеристики выборки, может вычисляться как по необработанным первичным данным, так и по результатам группировки этих данных.

Точность вычисления по необработанным данным выше, но процесс вычисления оказывается трудоёмким при большом объёме выборки.

Для несгруппированных данных среднее арифметическое определяется по формуле:

где n - объем выборки, х 1 , х 2 , ... х n - результаты измерений.

Для сгруппированных данных:

где n - объем выборки, k – число интервалов группировки, n i – частоты интервалов, x i – срединные значения интервалов.

Мода

Определение 1. Мода - наиболее часто встречающаяся величина в данных вы­борки. Обозначается Мо и определяетсяпо формуле:

где - нижняя граница модального интервала, - ширина интервала группи­ровки, - частота модального интервала, - частота интервала, предшествую­щего модальному, - частота интервала, последующего за модаль­ным.

Определение 2. Модой Мо дискретной случайной величины называется наиболее вероятное её значение.

Геометрически моду можно интерпретировать как абсциссу точки максимума кривой распределения. Бывают двухмодальные и многомодальные распределения. Встречаются распределения, которые имеют минимум, но не имеют максимума. Такие распределения называются антимодальными .

Определение. Модальным интервалом называется интервал группировки с наибольшей частотой.

Медиана

Определение . Медиана - результат измерения, который находится в сере­дине ранжированного ряда, иначе говоря, медианой называется значение признака Х , когда одна половина значений экспериментальных данных меньше её, а вторая половина – больше, обозначается Ме .

Когда объем выборки n - четное число, т. е. результатов измерений четное количество, то для определения медианы рассчитывается среднее значение двух показателей выборки, находящихся в середине ранжированного ряда.

Для данных, сгруппированных в интервалы, медиану определяют по фор­муле:

,

где - нижняя граница медианного интервала; ширина интервала группи­ровки, 0,5n – половина объёма выборки, - частота медианного интервала, - накопленная частота интервала, предшествующего медианному.

Определение. Медианным интервалом называется тот интервал, в котором накопленная частота впервые окажется больше половины объёма выборки (n/ 2) или накопленная частость окажется больше 0,5.

Численные значения среднего, моды и медианы отличаются, когда имеет место несимметричная форма эмпирического распределения.

Характеристики рассеяния результатов измерений

Для математико-статистического анализа результатов выборки знать только характеристики положения недостаточно. Одна и та же величина среднего значе­ния может характеризовать совершенно различные выборки.

Поэтому кроме них в статистике рассматривают также характеристики рассеяния (вариации, или колеблемости ) результатов .

Размах вариации

Определение. Размахом вариации называется разница между наибольшим и наименьшим результатами выборки, обозначается R и определяется

R =X max - X min .

Информативность этого показателя невелика, хотя при малых объёмах вы­борки по размаху легко оценить разницу между лучшим и худшим результатами спортсменов.

Дисперсия

Определение. Дисперсией называется средний квадрат отклонения значений признака от среднего арифметического.

Для несгруппированных данных дисперсия определяется по формуле

s 2 = , (1)

где Х i – значение признака, - среднее арифметическое.

Для данных, сгруппированных в интервалы, дисперсия определяется по формуле

,

где х i – среднее значение i интервала группировки, n i – частоты интервалов.

Для упрощения расчётов и во избежание погрешностей вычисления при округ­лении результатов (особенно при увеличении объёма выборки) используются также другие формулы для определения дисперсии. Если среднее арифметическое уже вычислено, то для несгруппированных данных используется следующая фор­мула:

для сгруппированных данных:

.

Эти формулы получаются из предыдущих раскрытием квадрата разности под знаком суммы.

Главная характеристика рассеивания вариационного ряда называется дисперсией

Главная характеристика рассеивания вариационного ряда называется дисперсией . Выборочная дисперсия D в рассчитывается по следующей формуле:

где x i – i -ая величина из выборки, встречающаяся m i раз; n – объём выборки; – выборочная средняя; k – количество различных значений в выборке. В рассматриваемом примере: x 1 =72, m 1 =50; x 2 =85, m 2 =44; x 3 =69, m 3 =61; n =155; k =3; . Тогда:

Заметим, что чем больше значение дисперсии, тем сильнее отличие значений измеряемой величины друг от друга. Если в выборке все значения измеряемой величины равны между собой, то дисперсия такой выборки равна нулю.

Дисперсия обладает особыми свойствами.

Свойство 1. Значение дисперсии любой выборки неотрицательно, т.е. .

Свойство 2. Если измеряемая величина постоянна X=c, то дисперсия для такой величины равна нулю: D [ c ]= 0.

Свойство 3. Если все значения измеряемой величины x в выборке увеличить в c раз, то дисперсия данной выборки увеличится в c 2 раз: D [ cx ]= c 2 D [ x ], где c = const .

Иногда вместо дисперсии используют выборочное среднее квадратическое отклонение , которое равно арифметическому квадратному корню из выборочной дисперсии: .

Для рассмотренного примера выборочное среднее квадратическое отклонение равно .

Дисперсия позволяет оценить не только степень различия измеряемых показателей внутри одной группы, но может быть использована и для определения отклонения данных между разными группами. Для этого используется несколько видов дисперсии.

Если в качестве выборки берётся какая-либо группа, то дисперсия данной группы называется групповой дисперсией . Чтобы выразить численно различия между дисперсиями нескольких групп, существует понятие межгрупповой дисперсии . Межгрупповой дисперсией называется дисперсия групповых средних относительно общей средней:

где k – число групп в общей выборке, - выборочная средняя для i -ой группы, n i – объём выборки i -ой группы, - выборочная средняя для всех групп.

Рассмотрим пример.

Средняя оценка за контрольную работу по математике в 10 «А» классе составила 3.64, а в 10 «Б» классе 3.52. В 10 «А» учится 22 человека, а в 10 «Б» - 21. Найдём межгрупповую дисперсию.

В данной задаче выборка разбивается на две группы (два класса). Выборочная средняя для всех групп равна:

.

В таком случае межгрупповая дисперсия равна:

Поскольку межгрупповая дисперсия близка к нулю, то мы можем сделать вывод, что оценки одной группы (10 «А» класса) в малой степени отличаются от оценок второй группы (10 «Б» класса). Иными словами, с точки зрения межгрупповой дисперсии рассмотренные группы в незначительной степени отличаются по заданному признаку.

Если общая выборка (например, класс учеников) разбита на несколько групп, то помимо межгрупповой дисперсии можно рассчитать ещё внутригрупповую дисперсию . Такая дисперсия является средней величиной для всех групповых дисперсий.

Внутригрупповая дисперсия D внгр рассчитывается по формуле:

где k – количество групп в общей выборке, D i – дисперсия i -ой группы объёма n i .

Существует взаимосвязь между общей (D в ), внутригрупповой (D внгр ) и межгрупповой (D межгр ) дисперсиями:

D в = D внгр + D межгр .

Характеристики положения дают усредненное представление о характерных значениях, принимаемых случайными величинами. Информации в этих характеристиках тем больше, чем меньшие отклонения от них могут наблюдаться в реальном эксперименте. Показатели, описывающие возможные отклонения значений случайной величины от «средних», называются характеристиками рассеяния. К ним относятся дисперсия, среднеквадратичное отклонение, срединное отклонение, коэффициент вариации и некоторые другие. 2.1. Дисперсия и ее свойства Важнейшей из них является дисперсия. Дисперсией случайной величины £ (обозначение #[£]) называется математическое ожидание квадрата отклонения случайной величины (от своего среднего Отметим некоторые свойства дисперсии. используя свойства математического ожидания, получаем Отметим, что если случайные величины - независимы, то из свойства 3 математического ожидания следует, что и указанное свойство выглядит так: 6. Если д^(х) - обобщенная плотность распределения случайной величины f, то £>[£] может быть вычислена из соотношения Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва в частности, если £ - непрерывная случайная величина с плотностью ж), то если же £ - дискретная случайная величина с рядом распределения Пример t (дисперсия бернуллиевой случайной величины). Пусть (- беонуллиева случайная величина, . В соответствие с соотношением (4), получаем (М= р) Пример 2 (дисперсия биномиальной случайной величины). Если £ - биномиальная с параметрами (п, р), то, как было отмечено выше, (представима в виде где - независимые одинаково распределенные бернуллиевы с параметром р случайные величины. Поэтому (свойство дисперсии 5) Одновременно доказано комбинаторное тождество Пример 3 (дисперсия равномерной на (и, случайной величины). Пусто Имеем Характеристикой рассеяния, тесно связанной с дисперсией, является среднее ква-дратическое отклонение случайной величины". Обладая тем же качественным наполнением (содержа в себе ту же информацию), что и дисперсия, среднее квадратическое отклонение имеет то преимущество, что измеряется в тех же единицах, что и рассматриваемая случайная величина. Отметим, что из свойств дисперсии с очевидностью следует: если только - независимы. В заключение заметим, что если у случайной величины £ существуют то можно построить случайную величину £, обладающую теми же свойствами, что и £, но имеющую стандартные числовые характеристики: М = 0 и D = 1. Достаточно положить Переход от (к £ - т носит название центрирование случайной величины а переход от- нормирование. Таким образом, соотношение (6) описывает процедуру нормирования и центрирования случайной величины Очевидно, что центрирование) не меняет дисперсии, в то время как нормирование, носящее характер масштабного преобразования, изменяет математическое ожидание в о раз. 2.2. Неравенство Чебышёва Из определения дисперсии (1) ясно, что она призвана качественно описывать рассеяние значений случайной величины относительно математического ожидания. Точный вероятностный смысл этого описания дается неравенством Чебышёва, которое мы здесь рассмотрим. Теорема. Пусть случайная величина £ обладает математическим ожиданием А/(£| = т и дисперсией /?(£) = а2. Тогда каково бы ни было е > О Рассмотрим вспомогательную случайную величину г/, заданную соотношением Заметим, что и потому По теореме о математическом ожидании функции от случайной величины получаем откуда или чем и завершается доказательство. Отметим, что неравенство (7) часто используется в эквивалентной форме получающейся из (7) применением очевидного соотношения Неравенство Чебышёва показывает, что чем меньше дисперсия, тем реже значения случайной величины £ «сильно» (больше чем на е) отклоняются от среднего т. При фиксированной дисперсии вероятности отклонений на величину, большую, чем е,тем меньше, чем больше е. Неравенство (7) универсально. Оно не предъявляет никаких требований к характеру распределения случайной величины f - достаточно существования т и а. В силу своей универсальности оно малоинформативно количественно - для разумных значений е оценки вероятностей крайне фубы. Пример. Для нормальной случайной величины с параметрами (0, 1) имеем Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва в то время как неравенство Чебышёва дает что верно, но тривиально. Для этой же случайной величины при е = 3 точное значение вероятности, а соотношение (8) приводит к оценке которая уже значительно лучше предыдущей. Несмотря на достаточно грубый характер оценок (7)-(8), без дополнительных предположений о характере распределения случайной величины неравенство Чебышёва, как показывает следующий пример, улучшить нельзя - оно точное1*. Пример. Пусть (-дискретная случайная величина, принимающая значения вероятностями соответственно. Легко видеть, что. Положим е = I и найдем значение вероятности Имеем Неравенство (7) в этой ситуации дает оценку которая совпадает с точным значением оцениваемой вероятности. 2.3. Другие характеристики рассеяния Из других характеристик рассеяния, часто используемых в приложениях, отметим коэффициент вариации и срединное отклонение (среднее арифметическое отклонение). Пусть у случайной величины £ существует А/[£) = m и = о2. Коэффициентом вариации случайной величины £ называется величина Из (9) легко усмотреть, что описывает рассеяние случайной величины £ в долях по отношению к среднему. Как абсолютный показатель рассеяния коэффициент вариации не очень удобен, однако для совместно центрированных случайных величин (т.е. имеющих одинаковые математические ожидания) он позволяет эффективно сравнивать диапазоны изменения. Пусть у случайной величины £ существует Срединным отклонением Срединное отклонение (/[£] качественно имеет тот же смысл, что и среднеква-дратическос отклонение - чем больше срединное отклонение, тем больше рассеяние, чем меньше срединное отклонение - тем меньше рассеяние. В том смысле, что существует случайная величина для которой в неравенствах (7)-(8) при некотором е достигается знак равенства. Для конкретных классов распределений связь между этими показателями может быть установлена, однако в общем случае удобных для использования на практике соотношений между U и а нет. Пример 1. Пусть (- нормально распределенная случайная величина. Тогда В этом случае Пример 2. Пусть { = Л[-о, о| - равномерно распределенная случайная величина. Тогда U = а/2. Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва Отметим, что и в этом случае Замеченное свойство U неслучайно -оно имеет место для любых случайных величин (конечно, обладающих дисперсией). Теорема. Если у случайной величины £ существует D£ = а2, то М В неравенстве Коши-Буняковского (свойство 6 математического ожидания) положим Ь Тогда откуда

В описательной статистике центральное место занимает оценивание параметров выборки.

Точечное оценивание параметров распределения

Точечная оценка - количественная характеристика генеральной совокупности, функция от наблюдаемых случайных величин. Далее речь пойдет о точечном оценивании параметров распределения.

Рассмотрим свойства точечных оценок.

А) Несмещенной оценкой параметра θ называется статистическая оценка θ* , математическое ожидание которой равно θ : М (θ* )= θ .

Если М (θ* ) > θ (или М (θ* ) < θ ) , то возникает систематическая ошибка (неслучайная ошибка, искажающая результаты измерений в одну сторону). Несмещенность оценки является гарантией защиты от систематических ошибок.

Б) Однако несмещенная оценка не всегда дает хорошее приближение оцениваемого параметра. Действительно, возможные значения θ* могут быть сильно рассеяны вокруг своего среднего значения (дисперсия D (θ* ) может быть велика). Тогда найденная по данной выборке оценка, например θ* 1 , может оказаться удаленной от М (θ* ), а значит и от θ . Поэтому естественным вслед за несмещенностью, является требование малости дисперсии.

Эффективной называют оценку, которая при данном объеме выборки имеет наименьшую дисперсию.

В) При рассмотрении выборок большого объема к статистическим оценкам предъявляется требование состоятельности. Состоятельной называют оценку, которая при n→∞ по вероятности стремиться к оцениваемому параметру:

Например, если дисперсия несмещенной оценки стремиться к нулю при n→∞, то такая оценка оказывается и состоятельной.

Перейдем к оцениванию параметров распределения.

Параметры распределения – это его числовые характеристики. Они указывают, где в среднем располагаются значения признака (мера положения ), насколько значения изменчивы (мера рассеяния), ихарактеризуют отклонение распределения от нормального (мера формы) . В реальных условиях исследования мы оперируем не параметрами, а их приближенными значениями – оценками параметров, которые являются функциями от наблюдаемых величин. Заметим, что чем больше выборка, тем ближе может быть оценка параметра к его истинному значению.



Пусть x 1 , x 2 , … x к вариационный ряд и n 1 , n 2 , … n к - частоты соответствующих вариант, n – объем выборки.

Показатели положения


Если дано интервальное статистическое распределение, то выборочная средняя определяется для соответствующих интервалов .

Где - середина интервала .

Выборочная средняя является несмещенной и состоятельной оценкой.

Медиана - значение признака, приходящееся на середину упорядоченного по возрастанию вариационного ряда. Если ряд состоит их (2N +1) вариант, то медианой является (N +1)-е значение варианта, если ряд состоит из 2N вариант, то медиана равна полусумме N – го и (N +1) – ого значений вариант.

Мода - вариант с наибольшей частотой. Если таких вариант несколько (у них одна и та же частота), то распределение называют полимодальным .

Показатели вариации

Размах – разница между наибольшим и наименьшим значениями вариант.

Выборочная дисперсия (оценка дисперсии) – характеристика рассеяния наблюдаемых значений количественного признака выборки вокруг своего среднего значения. Обозначим D в - выборочную дисперсию

Можно показать, что М(D в) = (n/(n-1))D в. Поэтому исправленная (несмещенная) дисперсия, которую будем обозначать через , равна


Кроме выборочной дисперсии для характеристики рассеяния пользуются сводной характеристикой - средним квадратическим отклонением (стандартом) σ
Выборочная асимметрия – характеристика симметричности распределения. Обозначается . Для симметричных распределений (в том числе для нормального распределения) асимметрия равна нулю. Если , то «длинная часть» кривой распределения расположена справа от математического ожидания, если , то слева от математического ожидания (рис.2.).

Выборочный эксцесс – характеристика «подъема, крутости» кривой распределения. Обозначается . Для нормального распределения эксцесс равен нулю. При , то кривая имеет более высокую и острую вершину, если , то кривая имеет более низкую вершину, чем нормальная кривая (рис.1).

Характеристики положения описывают центр распределения. В то же время значения вариант могут группироваться вокруг него как в широкой, так и в узкой полосе. Поэтому для описания распределения необходимо охарактеризовать диапазон изменения значений признака. Для описания диапазона варьирования признака используются характеристики рассеяния. Наиболее широкое применение нашли размах вариации, дисперсия, стандартное отклонение и коэффициент вариации.

Размах вариации определяется как разность между максимальным и минимальным значением признака в изучаемой совокупности:

R =x max -x min .

Очевидным достоинством рассматриваемого показателя является простота расчета. Однако поскольку размах вариации зависит от величин только крайних значений признака, то область его применения ограничена достаточно однородными распределениями. В остальных случаях информативность этого показателя весьма невелика, поскольку существует очень много распределений, сильно отличающихся по форме, но имеющих одинаковый размах. В практических исследованиях размах вариации используется иногда при малых (не более 10) объемах выборки. Так, например, по размаху вариации легко оценить, насколько различаются лучший и худший результаты в группе спортсменов.

В рассматриваемом примере:

R =16,36 – 13,04=3,32 (м).

Второй характеристикой рассеяния является дисперсия. Дисперсия представляет собой средний квадрат отклонения значения случайной величины от ее среднего значения. Дисперсия есть характеристика рассеяния, разбросанности значений величины около ее среднего значения. Само слово «дисперсия» означает «рассеяние».

При проведении выборочных исследований необходимо установить оценку для дисперсии. Дисперсия, вычисляемая по выборочным данным, называется выборочной дисперсией и обозначается S 2 .

На первый взгляд наиболее естественной оценкой для дисперсии является статистическая дисперсия, вычисленная, исходя из определения, по формуле:

В этой формуле - сумма квадратов отклонений значений признака х i от среднего арифметиче­ского . Для получения среднего квадрата отклонений эта сумма поделена на объем выборки п .

Однако такая оценка не является несмещенной. Можно показать, что сумма квадратов отклонений значений признака для выборочного среднего арифметического меньше, чем сумма квадратов отклонений от любой другой величины, в том числе от истинного среднего (математического ожидания). Поэтому результат, получаемый по приведенной выше формуле, будет содержать систематическую ошибку, и оценочное значение дисперсии окажется заниженным. Для ликвидации смещения достаточно ввести поправочный коэффициент . В результате получается следующее соотношение для оценочной дисперсии:

При больших значениях n , естественно, обе оценки - смещенная и несмещенная – будут различаться очень мало и введение поправочного множителя теряет смысл. Как правило, уточнение формулы для оценки дисперсии следует производить при n <30.

В случае сгруппированных данных последнюю формулу для упрощения вычислений можно привести к следующему виду:

где k - число интервалов группировки;

n i - частота интервала c номером i ;

x i - срединное значение интервала c номером i .

В качестве примера проведем вычисление дисперсии для сгруппированных данных разбираемого нами примера (см. табл. 4.):

S 2 =/ 28=0,5473 (м 2).

Дисперсия случайной величины имеет размерность квадрата размерности случайной величины, что затрудняет ее интерпретацию и делает не очень наглядной. Для более наглядного описания рассеяния удобнее пользоваться характеристикой, размерность которой совпадает с размерностью исследуемого признака. С этой целью вводится понятие стандартного отклонения (или среднего квадратического отклонения ).

Стандартным отклонением называется положительный корень квадратный из дисперсии:

В разбираемом нами примере стандартное отклонение равно

Стандартное отклонение имеет те же единицы измерения, что и результаты измерения исследуемого признака и, таким образом, оно характеризует степень отклонения признака от среднего арифметического. Иными словами, оно показывает, как расположена основная часть вариант относительно среднего арифметического.

Стандартное отклонение и дисперсия являются наиболее широко применяемыми показателями вариации. Связано это с тем, что они входят в значительную часть теорем теории вероятностей, служащей фундаментом математической статистики. Помимо этого, дисперсия может быть разложена на составные элементы, позволяющие оценить влияние различных факторов на вариацию исследуемого признака.

Помимо абсолютных показателей вариации, которыми являются дисперсия и стандартное отклонение, в статистике вводятся относительные. Наиболее часто применяется коэффициент вариации. Коэффициент вариации равен отношению стандартного отклонения к среднему арифметическому, выраженному в процентах:

Из определения ясно, что по своему смыслу коэффициент вариации представляет собой относительную меру рассеяния признака.

Для рассматриваемого примера:

Коэффициент вариации широко используется при проведении статистических исследований. Будучи величиной относительной, он позволяет сравнивать колеблемости как признаков, имеющих различные единицы измерения, так одного и того же признака в нескольких разных совокупностях с различными значениями среднего арифметического.

Коэффициент вариации используется для характеристики однородности полученных экспериментальных данных. В практике физической культуры и спорта разброс результатов измерений в зависимости от значения коэффициента вариации принято считать небольшим (V<10%), средним (11-20%) и большим (V> 20%).

Ограничения на использование коэффициента вариации связаны с его относительным характером – определение содержит нормировку на среднее арифметическое. В связи с этим при малых абсолютных значениях среднего арифметического коэффициент вариации может потерять свою информативность. Чем ближе значение среднего арифметического к нулю, тем менее информативным становится этот показатель. В предельном случае среднее арифметическое обращается в ноль (например, температура) и коэффициент вариации обращается в бесконечность независимо от разброса признака. По аналогии со случаем погрешности можно сформулировать следующее правило. Если значение среднего арифметического в выборке больше единицы, то использование коэффициента вариации правомерно, в противном случае для описания разброса опытных данных следует использовать дисперсию и стандартное отклонение.

В заключение этой части рассмотрим оценку варьирования значений оценочных характеристик. Как уже было отмечено, значения характеристик распределения, рассчитанные по данным эксперимента, не совпадают с их истинными значениями для генеральной совокупности. Точно установить последние не представляется возможным, поскольку, как правило, невозможно обследовать всю генеральную совокупность. Если использовать для оценки параметров распределения результаты разных выборок из одной и той же генеральной совокупности, то окажется, что эти оценки для разных выборок отличаются друг от друга. Оценочные значения флуктуируют около своих истинных значений.

Отклонения оценок генеральных параметров от истинных значений этих параметров называются статистическими ошибками. Причиной их возникновения является ограниченный объем выборки - не все объекты генеральной совокупности входят в нее. Для оценки величины статистических ошибок используется стандартное отклонение выборочных характеристик.

В качестве примера рассмотрим наиболее важную характеристику положения - среднее арифметическое. Можно показать, что стандартное отклонение среднего арифметического определяется соотношением:

где σ - стандартное отклонение для генеральной совокупности.

Поскольку истинное значение стандартного отклонения не известно, то для оценки стандартного отклонения выборочного среднего используется величина, называемая стандартной ошибкой среднего арифметического и равная:

Величина характеризует ошибку, которая в среднем допускается при замене генерального среднего его выборочной оценкой. Согласно формуле, увеличение объема выборки при проведении исследования приводит к уменьшению стандартной ошибки пропорционально корню квадратному из объема выборки.

Для рассматриваемого примера значение стандартной ошибки среднего арифметического равно . В нашем случае она оказалась в 5,4 раза меньше значения стандартного отклонения.

Похожие публикации