Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Условное обозначение элемента выполняющего логическую операцию. Логические элементы и, или, не, или-не, и-не

Логическим элементом называется минимальная совокупность взаимосвязанных компонентов, выполняющая простейшие логические операции (действия) над входными сигналами. К таким операциям относятся, например, логическое сложение (элемент ИЛИ), логическое умножение (элемент И), инверсия или отрицание (элемент НЕ) и ряд других.

Описать работу логического элемента – это означает выбрать способ задания зависимости его выходного сигнала от входных сигналов. Другими словами – определить зависимость значений выходного сигнала от значений входных сигналов. Так как входные и выходные сигналы в логических (цифровых) устройствах могут принимать только два значения лог.0 и лог.1, то названные зависимости будут двоичными (и логическими).

Для отображения двоичных зависимостей можно использовать три основных способа табличный, графический и аналитический. Выбор способа зависит от цели описания элемента. Если требуется уяснить работу элемента в установившемся режиме (в статике), достаточно применить табличный способ – построить таблицу, указав в ней значения выходного сигнала при соответствующем наборе значений входных сигналов. Такие таблицы называют таблицами истинности, а наборы значений входных сигналов – комбинациями. Если элемент имеет несколько выходов (многофункциональный элемент), то в таблице истинности показывают соответствующее число столбцов со значениями выходных сигналов (функций).

Графическое описание работы (функционирования) элемента заключается в построении временных диаграмм, на которых отображаются в виде условных уровней (лог.1 и лог.0) значения входных и выходных сигналов и их последовательности. Этот способ применяют, когда необходимо рассмотреть работу элемента в динамике, то есть оценить его быстродействие либо определить минимальные и максимальные длительности входных и выходных сигналов и т.д.

Аналитический способ используют для анализа функциональных свойств элемента, поиска возможных вариантов его применения для построения более сложных логических устройств и для формализации условий его работы. Этот способ основан на использовании булевой алгебры, с помощью которой выходной сигнал (функция) представляется логической зависимостью от входных сигналов (аргументов функции). Принято функции обозначать прописными, а аргументы строчными буквами латинского алфавита. Логические операции над аргументами обозначают специальными символами. В технических приложениях булевой алгебры логическая сумма (дизъюнкция) обозначается знаком плюс «+», логическое произведение (конъюнкция) точкой, либо точка между переменными не ставится, либо используется символ &, а инверсия – чертой над переменной (ā) и читается «не а».

Чтобы исследовать (уяснить) функциональные свойства логического элемента, необходимо найти в явном виде алгебраическое выражение его выходной функции, отобразив зависимости логическими символами между входными переменными (аргументами). Затем, пользуясь законами и следствиями булевой алгебры, а также определениями дизъюнкции, конъюнкции и инверсии, сформулировать свойства элемента и определить его назначение.

Рассмотрим это на примере анализа свойств двухвходового логического элемента И-НЕ.

Условное графическое обозначение (УГО), таблица истинности и временные диаграммы работы этого элемента приведены на рис. 1.а и б и рис.1.в, соответственно.

Из УГО следует, что на входы потенциальные не инверсные, а выход – инверсный, потенциальный. Обозначим входные сигналы логическими переменными a и b, соответственно, по входам «вх.1» и «вх.2», а выходной сигнал функцией X.

Примем, что сигнал лог.1 отображается более высокими уровнем по отношению к сигналу лог.0 (такое соглашение называют соглашением «положительной логики» ). Тогда, проведя эксперимент, в котором на входы элемента будут подаваться все возможные наборы значений двух сигналов a и b (комбинации двоичного безызбыточного двухэлементного кода), можно определить значения выходного сигнала и построить таблицу истинности функции X , рис.1,б. Из анализа таблицы следует, что X принимает значение лог.0 только в единственном случае, когда оба входных сигнала одновременно принимают значение лог.1, т.е. когда сигналы лог.1 совпадают во времени. Поэтому выходной сигнал описывается инверсией логического произведения переменных a и b:

Таким образом, элемент И-НЕ (рис.1, а) представляет собой схему совпадения на два входа с инверсией выходного сигнала.

Рис.1 К анализу функциональных свойств элемента И-НЕ

Обратите внимание: функция X была определена по отношению к единичным значениям входных сигналов . Иными словами, если активными значениями входных сигналов считать лог.1, то элемент И-НЕ реализует инверсию логического произведения этих сигналов.

Если же за активное принять значение лог.0 (низкий уровень), то в то же самое время элемент И-НЕ реализует логическую сумму инверсий входных сигналов:

(2)

и ему будет соответствовать УГО рис.1,г. Это условное графическое обозначение элемента И-НЕ соответствует соглашения «отрицательной логики» .

Полученные выводы известны в булевой алгебре под названием «закона де Моргана относительно логического произведения»:

(3)

Анализируя выражение (1) и (2) при a=b, либо при а=1 или b=1, можно придти к выводу, что элемент И-НЕ можно использовать в качестве инвертора (элемента НЕ). Для этого на его оба входа надо подать один и тот же сигнал, либо один из входов подключить к шине лог.1, то есть подать сигнал логической единицы.

На рис. 2 приведены варианты реализации элемента НЕ на логическом элементе И-НЕ.

Рис. 2. Реализация элемента НЕ на элементе И-НЕ

Эти варианты являются следствиями закона тавтологии и закона дойного отрицания булевой алгебры:

Следует заметить, для микросхем ТТЛ неиспользование какого-либо входа (соответствующий вывод микросхемы не подключен ни к шине лог.0, ни к шине лог.1) равносильно подаче на этот вход сигнала лог.1.

Поэтому, если у многовходового элемента И-НЕ оставить входы «свободными», то на выходе будет всегда сигнал лог.0.

Кроме того, из выражения (1) следует, поскольку от перемены мест сомножителей произведение не меняется, то входы элементов И-НЕ логически равнозначны . Это означает, что безразлично, на какой вход будут подаваться входные сигналы, последние можно « менять местами».

Из булевой алгебры известно, инверсия логического произведения (называемая функцией Шеффера) образует базис, то есть полную систему логических функций. И, следовательно, состоящий только из логических элементов И-НЕ набор является функционально полным . В свою очередь, это означает, что на таком наборе можно построить любое цифровое устройство, какой сложности оно бы ни было.

Покажем, что только логическими двухвходовыми элементами И-НЕ (2И-НЕ) можно реализовать логическую сумму сигналов:

Допустим a= , b= и подставим эти значения в выражение (1):

Полученному соотношению соответствует функциональная схема, эквивалентная логическому элементу ИЛИ (см. рис.3,а и рис.3,б).

Реализовать просто логическое произведение (без инверсии) двух сигналов применением двух элементов И-НЕ, один из которых использовать как элемент НЕ, и включить их последовательно.

Таким образом, элементы 2И-НЕ позволяют реализовать три основные логические операции И, ИЛИ и НЕ, через которые представляется любая логическая функцию. Это доказывает функциональную полноту набора элементов И-НЕ.

Анализ работы элемента И-НЕ во времени проводят путем построения временных диаграмм при фиксированной последовательности входных сигналов (см. рис.1,в), показывая значения выходного сигнала в зависимости от значений входных. Так указанные диаграммы иллюстрируют случай, когда входные сигналы a и b изменяются в последовательности 00 -10 – 11 – 01 - 00.

Рис.3. Реализация логической суммы на элементах И-НЕ (а) и на элементе ИЛИ (б)

Причем длительности фронта и спада этих сигналов исчезающее малы, что показано скачкообразным изменением их уровней. Моменты изменения помечены, соответственно, t 0 и t 2 – для сигнала а, t 1 и t 3 – для сигнала b. Диаграмма сигнала X построена с учётом задержек в распространении сигналов от входов к выходу элемента, что отображено наклонными линиями фронта и спада выходного сигнала. Углом наклона отображают в некотором масштабе длительности переходов элемента из одного состояния в другое.

Временные диаграммы позволяют определить временные соотношения между входными и выходными сигналами и оценить быстродействие элемента, например, определить граничную частоту его переключения. Так из рассматриваемого примера диаграмм следует:

  • ∆t 1 = t 2 – t 0 – длительность сигнала a;
  • ∆t 2 = t 3 – t 1 – длительность сигнала b;
  • (t 1 – t 0) – задержка сигнала b относительно фронта сигнала a;
  • (t 2 – t 1) – длительность активного воздействия на элемент, когда оба входных сигнала имеют значение лог.1.

Если учесть задержки в изменении выходного сигнала относительно моментов (t 1 и t 2) изменения активного воздействия, то длительность сигнала X (значения лог.0) можно определить по формуле:

В формуле (5) знаки « - » и «+» обозначают арифметическое вычитание и сложение, соответственно, а t 10 зд.р. – задержка распространения сигнала при переходе элемента из состояния лог.1 в состояние лог.0 (при «включении»);

t 01 зд.р. – задержка распространения сигнала при переходе элемента из состояния лог.0 в состояние лог.1 (при «выключении»). Указанные задержки есть временные параметры логических элементов и их значения обычно приводятся в справочниках по ИМС .

Очевидно, если t 2 – t 1 < или = t 10 зд.р. , то выходной сигнал не изменит своего значения (лог.1) и элемент не будет реагировать на такие входные сигналы.

Аналогично можно построить временные диаграммы, когда исходное значение входных сигналов равно лог.1. И придти к выводу: элемент не будет реагировать на сигналы лог.0, если их длительность будет меньше или равна t 01 зд.р. . Обычно t 01 зд.р. >t 10 зд.р. , что обусловлено физикой работы базового логического элемента ИМС ТТЛ. Очевидно, что быстродействие элемента будет определяться граничной частотой переключения, которую можно определить по формуле

где косая соответствует символу арифметического деления.

3.Описание лабораторной установки

Данная лабораторная работа выполняется на субблоке «Логические элементы». На лицевой панели субблока расположены (см. функциональную схему рис.4):

· Тумблеры SA1 – SA4 для подачи сигналов лог.1 и лог.0 на входы исследуемых логических элементов;

· Светодиоды VH1 – VH4 для визуального контроля значений выходных сигналов;

· Гнёзда X1 – X17 для коммутации элементов между собой и подключения осциллографа.

Рис.4 Функциональная схема субблока «Логические элементы»

Для исследования элементов в динамическом режиме работы предусмотрен генератор импульсов прямоугольной формы D1 (несимметричный мультивибратор, собранный на элементах НЕ) и делитель частоты на двоично-десятичном счетчике импульсов D2 (микросхема К155ИЕ2).

Частоту генератора можно плавно регулировать в пределах от 20Гц до 2 кГц. Для этой цели на панель выведен движок переменного резистора. Частота импульсов на выходе 1 счётчика D2 (гнезда X2) в два раза, а на выходе 8 (гнезда X3) в десять раз меньше частоты генератора. На рис. 4,б приведены временные диаграммы сигналов на выходе генератора и выходах 1 и 8 счётчика, помеченные, соответственно, метками X1, X2 и X3. В работе исследуются логические элементы И, ИЛИ, И-НЕ и элемент НЕ, непосредственно представленные микросхемами: К155ЛИ1 (D3), K155ЛЛ1 (D4), K155 ЛА3 (D5) и К155ЛН1(D6)?, соответственно. Кроме того, можно исследовать схемы, эквивалентные логическим элементам ИЛИ-НЕ, ЗАПРЕТ, ИМПЛИКАТОР и др., реализуемые сборочными операциями на передней панели субблока.

4. Задание на лабораторную работу

4.1 Уяснить основные понятия и методы анализа функциональных свойств логических элементов.

4.2 Каждый логический элемент исследовать в статическом и динамическом режимах работы. При этом необходимо:

  • Уяснить (составить) УГО элемента при соглашениях положительной и отрицательной логики;
  • Составить таблицу истинности либо карту Карно функции, реализуемой рассматриваемым логическим элементом;
  • Найти минимальное алгебраическое выражение функции;
  • Построить временные диаграммы работы для характерных последовательностей входных сигналов;
  • Сделать выводы о свойствах и применении элемента.

Перечень подлежащих обязательному анализу элементов приведен в табл. 4.1.

Дополнительно выполняется индивидуальное задание по исследованию многофункционального логического элемента (см. табл. 4.2.). Вариант указывается преподавателем либо выбирается по порядковому номеру бригады студентов.

4.3 Для микросхем серии К155 типов: ЛИ1, ЛЛ1, ЛН1 и ЛА3 привести электрические параметры, а также составить УГО этих микросхем, указав номера выводов (цоколёвку).

4.4 При выполнении работы руководствоваться методическими указаниями п.6.

Отчёт выполняется и оформляется в соответствии с требованиями, принятыми на кафедре АиКС. В отчёте представить:

5.1. УГО исследуемых логических элементов, таблицы истинности или карты Карно реализуемых ими функций. Данные оформить в таблице по форме табл. 4.1.

5.2. Временные диаграммы работы многофункционального логического элемента в динамическом режиме.

5.3. Выводы по функциональным свойствам и применению рассмотренных логических элементов.

Таблица 4.1

5.4. Условные графические обозначения и таблицу с основными электрическими параметрами, указанных в п.4.3 микросхем.

6. Методические указания

6.1. Перед включением напряжения питания поставьте тумблеры SA1,…SA4 (см. рис.4) в положение «ВЫКЛ.» (флажок вниз). Проконтролируйте подачу питания по загоранию соответствующего светодиода. Помните , на неподключенном входе логического элемента присутствует потенциал (2,4…3)В, равносильный сигналу лог.1. Убедитесь в исправности исследуемых элементов по светодиодам VH1,…VH4, включенным на выходы элементов. Соблюдайте правила безопасности! Запрещается соединять коммутационные гнёзда на выходах элементов с корпусом стенда либо с гнездом X15 (). Гнёзда X15 и X16 предназначены для подключения осциллографа (внешней его синхронизации).

Таблица 4.2

6.2. При выполнении задания руководствуйтесь методикой анализа, изложенной на примере анализа свойств элемента И-НЕ.

Наиболее просто зависимости выходных сигналов от входных задать с помощью карт Карно (матриц булевых функций). Ознакомиться с правилами построения карт Карно можно по . При анализе уясните однозначное соответствие между УГО элемента и реализуемой им функцией , то есть её алгебраическим выражением. Используйте это соответствие для адекватного перехода от функциональной схемы к логическому её описанию и обратно, от логического описания к функциональной схеме .

Поскольку в лабораторной установке используется ограниченное по номенклатуре число микросхем, то для исследования многофункциональных элементов (см. табл. 4.2) и даже элементов поз. 4, 6 и 7, табл.4.1 требуется предварительно составить их функциональные эквивалентные схемы. А затем, собрав схему на лицевой панели субблока, провести исследования.

Чтобы найти УГО элемента при соглашениях отрицательной логики, запишите алгебраическое выражение реализуемой им функции и примените к нему законы де Моргана. По полученному выражению составьте условное графическое обозначение. Правила формирования УГО легко уяснить, сопоставляя рис.1,а с выражением (1) и рис.1, г с выражением (2) для функции И-НЕ. Следуйте рекомендациям и требованиям ГОСТов .

6.3. Анализ работы логических элементов в динамическом режиме провести с учетом тех последовательностей сигналов, которые можно получить в лабораторной установке. При этом руководствуйтесь диаграммами, приведёнными на рис.4,б. Обратите внимание на соотношение длительностей импульсов (лог.0) и пауз (лог.1) сигнала X 1 . Эти соотношения следует выдерживать при построении диаграмм. Кроме того, длительности задержек t 10 зд.р. и t 01 зд.р. для микросхем К155 достаточно малы по сравнению с длительностями сигналов (составляют порядка десятков наносекунд), поэтому диаграммы допускается вычерчивать упрощенно, пренебрегая длительностями переходов. То есть переход от одного уровня к другому можно показывать скачком. Временные диаграммы в отчете можно привести только для многофункционального логического элемента согласно индивидуальному заданию по табл.4.2. Как видно, в табл.4.2 приведены трехвходовые элементы, у которых только два из трех входов логически равнозначны.

Эксперименты поставить для трех случаев, когда последовательности X 1 , X 2 и X 3 (см. рис. 4,б) меняются («местами») только на логически неравнозначных входах . В начале постройте диаграммы, а затем проведите эксперимент.

Определите по диаграммам временные параметры выходных последовательностей через параметры входных последовательностей для каждого из трех случаев. Под «параметрами» некоторой последовательности импульсных сигналов понимать: длительности импульсов и пауз; частоту следования импульсов (либо период их следования); длительность цикла изменения сигналов и др. Примите за единицу времени длительность одного такта ∆t, равного периоду следования импульсов с выхода генератора D1 (см. рис.4,а). Отобразите эти параметры на приводимых диаграммах.

Электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными, называется логическим элементом. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе - также получается в виде напряжения определенного уровня.

Операнды в данном случае подаются - на вход логического элемента поступают сигналы в форме напряжения высокого или низкого уровня, которые и служат по сути входными данными. Так, напряжение высокого уровня - это логическая единица 1 - обозначает истинное значение операнда, а напряжение низкого уровня 0 - значение ложное. 1 - ИСТИНА, 0 - ЛОЖЬ.

Логический элемент - элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления. Для всех видов логических элементов, независимо от их физической природы, характерны дискретные значения входных и выходных сигналов.

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

В зависимости от устройства схемы элемента, от ее электрических параметров, логические уровни (высокие и низкие уровни напряжения) входа и выхода имеют одинаковые значения для высокого и низкого (истинного и ложного) состояний.

Традиционно логические элементы выпускаются в виде специальных радиодеталей - интегральных микросхем. Логические операции, такие как конъюнкция, дизъюнкция, отрицание и сложение по модулю (И, ИЛИ, НЕ, исключающее ИЛИ) - являются основными операциями, выполняемыми на логических элементах основных типов. Далее рассмотрим каждый из этих типов логических элементов более внимательно.

Логический элемент «И» - конъюнкция, логическое умножение, AND


«И» - логический элемент, выполняющий над входными данными операцию конъюнкции или логического умножения. Данный элемент может иметь от 2 до 8 (наиболее распространены в производстве элементы «И» с 2, 3, 4 и 8 входами) входов и один выход.

Условные обозначения логических элементов «И» с разным количеством входов приведены на рисунке. В тексте логический элемент «И» с тем или иным числом входов обозначается как «2И», «4И» и т. д. - элемент «И» с двумя входами, с четырьмя входами и т. д.


Таблица истинности для элемента 2И показывает, что на выходе элемента будет логическая единица лишь в том случае, если логические единицы будут одновременно на первом входе И на втором входе. В остальных трех возможных случаях на выходе будет ноль.

На западных схемах значок элемента «И» имеет прямую черту на входе и закругление на выходе. На отечественных схемах - прямоугольник с символом «&».

Логический элемент «ИЛИ» - дизъюнкция, логическое сложение, OR


«ИЛИ» - логический элемент, выполняющий над входными данными операцию дизъюнкции или логического сложения. Он так же как и элемент «И» выпускается с двумя, тремя, четырьмя и т. д. входами и с одним выходом. Условные обозначения логических элементов «ИЛИ» с различным количеством входов показаны на рисунке. Обозначаются данные элементы так: 2ИЛИ, 3ИЛИ, 4ИЛИ и т. д.


Таблица истинности для элемента «2ИЛИ» показывает, что для появления на выходе логической единицы, достаточно чтобы логическая единица была на первом входе ИЛИ на втором входе. Если логические единицы будут сразу на двух входах, на выходе также будет единица.

На западных схемах значок элемента «ИЛИ» имеет закругление на входе и закругление с заострением на выходе. На отечественных схемах - прямоугольник с символом «1».

Логический элемент «НЕ» - отрицание, инвертор, NOT

«НЕ» - логический элемент, выполняющий над входными данными операцию логического отрицания. Данный элемент, имеющий один выход и только один вход, называют еще инвертором, поскольку он на самом деле инвертирует (обращает) входной сигнал. На рисунке приведено условное обозначение логического элемента «НЕ».

Таблица истинности для инвертора показывает, что высокий потенциал на входе даёт низкий потенциал на выходе и наоборот.

На западных схемах значок элемента «НЕ» имеет форму треугольника с кружочком на выходе. На отечественных схемах - прямоугольник с символом «1», с кружком на выходе.

Логический элемент «И-НЕ» - конъюнкция (логическое умножение) с отрицанием, NAND

«И-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Другими словами, это в принципе элемент «И», дополненный элементом «НЕ». На рисунке приведено условное обозначение логического элемента «2И-НЕ».


Таблица истинности для элемента «И-НЕ» противоположна таблице для элемента «И». Вместо трех нулей и единицы - три единицы и ноль. Элемент «И-НЕ» называют еще «элемент Шеффера» в честь математика Генри Мориса Шеффера, впервые отметившего значимость этой в 1913 году. Обозначается как «И», только с кружочком на выходе.

Логический элемент «ИЛИ-НЕ» - дизъюнкция (логическое сложение) с отрицанием, NOR

«ИЛИ-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Иначе говоря, это элемент «ИЛИ», дополненный элементом «НЕ» - инвертором. На рисунке приведено условное обозначение логического элемента «2ИЛИ-НЕ».


Таблица истинности для элемента «ИЛИ-НЕ» противоположна таблице для элемента «ИЛИ». Высокий потенциал на выходе получается лишь в одном случае - на оба входа подаются одновременно низкие потенциалы. Обозначается как «ИЛИ», только с кружочком на выходе, обозначающим инверсию.

Логический элемент «исключающее ИЛИ» - сложение по модулю 2, XOR

«исключающее ИЛИ» - логический элемент, выполняющий над входными данными операцию логического сложения по модулю 2, имеет два входа и один выход. Часто данные элементы применяют в схемах контроля. На рисунке приведено условное обозначение данного элемента.

Изображение в западных схемах - как у «ИЛИ» с дополнительной изогнутой полоской на стороне входа, в отечественной - как «ИЛИ», только вместо «1» будет написано «=1».


Этот логический элемент еще называют «неравнозначность». Высокий уровень напряжения будет на выходе лишь тогда, когда сигналы на входе не равны (на одном единица, на другом ноль или на одном ноль, а на другом единица) если даже на входе будут одновременно две единицы, на выходе будет ноль - в этом отличие от «ИЛИ». Данные элементы логики широко применяются в сумматорах.

Основу сложных КС, реализующих произвольные булевые функции, составляют базовые элементы, обычно 2И-НЕ или 2ИЛИ-НЕ. Это обусловлено тем, что если имеется возможность создать электронное устройство, реализующее любую из этих двух функций, то тогда вследствие функциональной полноты последних на базе созданного устройства можно реализовать любую другую сколь угодно сложную логическую функцию путем соответствующего соединения друг с другом требуемого количества базовых элементов.

Логический элемент 2и-не


Логический элемент 2или-не

Условное обозначение Логическая функция Таблица соответствия


Электронная реализация базового логического элемента 2и-не

Принципиальная схема логического элемента 2И - НЕ приведена на рис. 1. Пусть на входе х1 присутствует напряжение низкого уровня (логический 0), а х2=1. Тогда транзистор VT1 открыт, т.к. переход эмиттер - база транзистораVT1включен в прямом направлении (ток проходит от источника питания +5 В через резистор R1 и этот переход ко входу х1). В режиме насыщения напряжение

Рис. 1. Электронная реализация логического элемента 2И-НЕ.

коллектор-эмиттер транзистора VT1 составляет порядка U кэ ~0.1 В, поэтому напряжение на коллекторе U k1 уменьшается почти до нулевого потенциала, что приводит к закрытию транзисторов VT2, VT3. При этом напряжение на коллекторе транзистора VT2 будет близко к напряжению питания и ток через резистор R2 и открытый переход база-эмиттер приводит к открытию транзистора VT4. В результате напряжение питания будет делиться на выходном делителе, образуемом резистором R3, открытым транзистором VT4, диодом и закрытым транзистором VT3. Т.к. сопротивление закрытого транзистора много больше сопротивления открытого транзистора, то на выходе у получим высокий уровень напряжения, т.е. логическую 1.

Аналогичная ситуация имеет место при х2=0, х1=1, а также при х1=х2=0.

Пусть теперь на входах х1, х2 присутствует высокий уровень напряжения (х1=х2=1). Тогда переход эмиттер-база транзистора VT1 закрыт, но переход база-коллектор этого транзистора будет открыт в прямом направлении. В результате открываются транзисторы VT2, VT3, и напряжение на коллекторе U k2 близко к нулю. Это приводит к закрытию транзистора VT4. Следовательно, в этом случае напряжение на выходе у будет близко к нулю, т.е. соответствует уровню логической 1.

Таким образом, мы убедились, что данная электрическая схема позволяет реализовать таблицу соответствия логической функции 2И-НЕ, представляемой функцией Шеффера y=:

Логические элементы - это наименьшие цифровые элементы электронной вычислительной машины (ЭВМ).

Базовые логические элементы

Базовыми, или простейшими логическими элементами являются:

  • Элемент ИЛИ
  • Элемент И
  • Элемент НЕ
  • Исключающее ИЛИ
  • Базовыми эти логические элементы называются потому что на их основе можно соорудить любую другую логику.

    Элемент ИЛИ (OR)

    Логический элемент ИЛИ или логическое сложение на выходе имеет 1 если хотя бы один вход = 1.

    Элемент И (AND)

    Логический элемент И или логическое умножение на выходе имеет 1 только если оба входа установлены в 1.

    Элемент НЕ (NOT)

    Логический элемент НЕ инвертирует входное значение. Если на входе 0, то на выходе 1. Если на входе 1, то на выходе 0.

    Элемент Исключающее ИЛИ (XOR)

    Логический элемент Исключающее ИЛИ имеет на выходе 1 только если значения на входах различаются.

    Дополнительные логические элементы

    Дополнительные логические элементы служат для удобного выражения различных логических операций:

  • ИЛИ-НЕ
  • Исключающее ИЛИ-НЕ
  • Элемент И-НЕ (NAND)

    Логический элемент И-НЕ является инверсией элемента И. На выходе появляется 1 в случае, если хотя бы на одном входе 0.

    Элемент ИЛИ-НЕ (NOR)

    Логический элемент ИЛИ-НЕ является инверсией элемента ИЛИ. На выходе появляется 1 только если на обоих входах 0.

    Элемент Исключающее ИЛИ-НЕ (XNOR)

    Логический элемент Исключающее ИЛИ-НЕ имеет на выходе 1 только если на обоих входах одинаковые значения.

    ложь ". В вычислительной технике логические 0 и 1 - это состояние электрических схем с определенными параметрами. Так, для логических элементов и схем, выполненных по технологии транзисторно-транзисторной логики (ТТЛ-схемы), логический 0 - это напряжение в диапазоне 0 … + 0,4 В, а логическая 1 - это напряжение в диапазоне + 2,4 … + 5 В . Работа логических схем описывается посредством специального математического аппарата, который называется логической (булевой) алгеброй или алгеброй логики. Булева алгебра была разработана Джорджем Булем (1815 - 1864 гг.), она является основой всех методов упрощения булевых выражений.

    Логические переменные и логические функции - это такие переменные и функции, которые могут принимать только два значения - либо логический 0, либо логическая 1 .

    Основные логические функции и элементы

    Логический элемент - графическое представление элементарной логической функции .

    Логическое умножение (конъюнкция) - функция И

    Рассмотрим ключевую схему представленную на рис. 1.1 ,а. Примем за логический 0 :

    Таблица истинности - это таблица, содержащая все возможные комбинации входных логических переменных и соответствующие им значения логической функции.


    Рис. 1.1.

    Таблица истинности для логической схемы, представленной на рис. 1.1 ,б, состоит из 8 строк, поскольку данная схема имеет три входа - , и . Каждая из этих логических переменных может находиться либо в состоянии логического 0, либо логической 1. Соответственно количество сочетаний этих переменных равно . Очевидно, что через сопротивление R ток протекает только тогда, когда замкнуты все три ключа - и , и , и . Отсюда еще одно название логического умножения - логический элемент И. В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.1 ,в.

    Правило логического умножения :если на вход логического элемента И подается хотя бы один логический 0, то на его выходе будет логический 0.

    Уровень логического 0 является решающим для логического умножения .

    В логических выражениях применяется несколько вариантов обозначения логического умножения. Так, для приведенного на рис. 1.1 ,в трёх-входового элемента И, логическое выражение можно представить в виде:

    Логическое сложение (дизъюнкция) - функция ИЛИ

    рис. 1.2 ,а. Таблица истинности для данной логической схемы (рис. 1.2 ,б) состоит из 4 строк, поскольку данная схема имеет два входа - и . Количество сочетаний этих переменных равно . Очевидно, что через сопротивление R ток протекает тогда, когда замкнуты или , или . Отсюда еще одно название логического сложения - логическое ИЛИ . В логических схемах соответствующий логический элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.2 ,в.


    Рис. 1.2.

    Правило логического сложения : если на вход логического элемента ИЛИ подается хотя бы одна логическая , то на его выходе будет логическая 1.

    Для логического сложения решающим является уровень логической 1 .

    В логических выражениях применяется два варианта обозначения логического сложения . Так, для приведенного двух-входового элемента ИЛИ, логическое выражение можно представить в виде:

    Логическое отрицание (инверсия) - функция НЕ

    Рассмотрим ключевую схему, представленную на рис. 1.3 ,а. Таблица истинности для данной схемы (рис. 1.3 ,б) самая простая и состоит всего из 2 строк, поскольку она (единственная из всех логических элементов) имеет только один вход - . Количество вариантов для единственной логической переменной равно . Очевидно, что через сопротивление R ток протекает () тогда, когда не замкнут, т.е. . Еще одно название этой логической функции - отрицание , а соответствующий логический элемент называется инвертором . В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.3 ,в. Поскольку он имеет только один вход, в его обозначении допустимым является и знак логического сложения, и знак логического умножения.


    Рис. 1.3.

    Правило инверсии : проходя через инвертор, сигнал меняет свое значение на противоположное.

    Похожие публикации