Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Реактивная мощность. Расчет реактивной силы (тяги) Формула мещерского для реактивного движения

Следует различать понятия двигатель и силовая установка .

Двигателем принято называть устройство, участвующее в создании тяги (или мощности), необходимой для движения летательного аппарата. Двигатель является составной частью силовой установки, той ее частью, которая изготавливается и поставляется двигательным заводом.

Авиационной силовой установкой называют конструктивно объединенную совокупность двигателя с входным и выходным устройствами (с теми их элементами, которые изготавливаются на самолетостроительном заводе), встроенную в конструкцию планера (фюзеляжа или крыла) или скомпонованную в отдельных двигательных гондолах.

Силовая установка, помимо двигателя, входного и выходного устройств, включает в себя еще системы топливопитания, смазки, запуска и автоматического управления, обеспечивающие ее надежное функционирование, а также узлы крепления, необходимые для передачи усилий от двигателя к планеру. В теории авиадвигателей эти системы и узлы не рассматриваются.

2.2. Тяга реактивного двигателя

Под тягой двигателя Р понимают тягу без учета внешних сопротивлений входных и выходных устройств и других элементов силовой установки.

Тяга реактивного двигателя определяется по формуле:

Эта формула получила наименование формулы Стечкина .

Она была впервые получена Борисом Сергеевичем Стечкиным в его знаменитой работе «Теория воздушного реактивного двигателя», опубликованной в 1929 г. Она выведена в предположении, что двигатель расположен в мотогондоле, векторы скорости истечения и скорости полета параллельны оси двигателя, а внешнее обтекание двигателя является идеальным, т.е. происходит без трения, отрыва потока и без скачков уплотнения.

В формуле Стечкина в ряде случаев могут быть сделаны упрощения. Так, если пренебречь тем, что расходы воздуха на входе в двигатель
и газа на выходе из него
отличаются, получим.

отличается от
по той причине, что в ГТД подводится топливо и могут быть отборы воздуха на нужды летательного аппарата.

При полном расширении газа в сопле до атмосферного давления (р с =р Н ) формула тяги приобретает еще более простой вид

. (2.3)

2.3. Эффективная тяга силовой установки

Под эффективной тягой силовой установки Р эф понимают ту часть силы тяги двигателя, которая непосредственно используется для движения самолета, т.е. идет на совершение полезной работы по преодолению лобового сопротивления и инерции летательного аппарата. ВеличинаР эф равна тяге двигателяР за вычетом всех внешних сопротивлений, создаваемых самой силовой установкой.

По физическому смыслу Р эф является равнодействующей всех сил давления и трения, действующих на элементы проточной части со стороны газового потока, протекающего через силовую установку изнутри, и внешнего потока воздуха, обтекающего силовую установку снаружи. Задача определения эффективной тяги сводится к нахождению векторной суммы всех указанных сил. Эти силы принято разделять на внутренние (вн) и наружные (нар).

Внутренние силы представляют собой сумму сил давления и трения, действующих на рабочие поверхности силовой установки изнутри. Величина равнодействующей внутренних сил зависит от термодинамического совершенства рабочего процесса двигателя и практически не зависит от способа установки двигателя на летательном аппарате.

Наружные силы представляют собой совокупность сил давления и трения, действующих на силовую установку со стороны обтекающего ее внешнего потока. Эти силы существенно зависят от способа размещения силовой установки на летательном аппарате.

Рассмотрим наиболее простой с точки зрения учета условий внешнего обтекания случай - изолированная силовая установка в отдельной мотогондоле.

Наружная поверхность силовой установки здесь условно разделена на три части: лобовую часть вх М , центральную часть М
и кормовую часть
c .

Набегающий поток воздуха разделяется поверхностью тока Н–1–2–вх на внутренний, проходящий через двигатель, и внешний, обтекающий силовую установку снаружи. Сечения в невозмущенном потоке перед силовой установкой, на входе в воздухозаборник и на выходе из сопла двигателя обозначим Н–Н, вх–вх и с–с . Соответственно, площади нормальных сечений будут F Н , F вх и F с.

Главной причиной возникновения внешнего сопротивления силовой установки при сверхзвуковых скоростях полета является повышение давления на головном участке гондолы вх–М и наличие разрежения на ее кормовом участке
–c . К этому прибавляется сопротивление от сил трения по всей поверхности гондолы от сечения вх–вх до сечения с–с .

Эффективная тяга силовой установки, согласно определению, равна

, (2.4)

где R вн – равнодействующая сил давления и трения, действующих на внутренние поверхности силовой установки;

R нар – равнодействующая сил давления и трения, действующих на всю наружную поверхность гондолывх М
c .

Зная характер распределения давлений по наружной поверхности гондолы, величину силы R нар можно определить непосредственным интегрированием сил давления и трения по этой поверхности. Тогда

, (2.5)

где иX тр  – равнодействующие сил давления и трения, приложенные к наружной поверхности гондолы;dF =dS cos – проекция элемента поверхности гондолы на плоскость, перпендикулярную направлению полета ( – угол между нормалью к элементу поверхности и этой плоскостью).

Величину R вн определим, пользуясь уравнением сохранения количества движения для некоторого контрольного объема, включающего все внутренние поверхности силовой установки. В качестве такого контрольного объема выберем объем внутренней струи, заключенный между сечениямиН Н ис с .

, (2.6)

где p Н F Н иp с F с – силы давления, приложенные к торцевым поверхностям выделенного участка струи;– равнодействующая сил давления, приложенных к боковой поверхности струи токаН–1–2–вх ;R вн – равнодействующая сил давления и трения, действующих на внутренние поверхности силовой установки (равная по модулю силе
, действующей со стороны СУ на выделенный контрольный объем газа).

Отсюда находим

. (2.7)

Подставляя выражения R нар из (2.6) иR вн из (2.8) в уравнение (2.5), получим

Для перехода от абсолютных давлений к избыточным воспользуемся следующим очевидным тождеством:

.

Оно позволяет выражение (2.9) привести к виду

Эта формула является общим выражением эффективной тяги для силовой установки рассмотренной схемы. При этом необходимо иметь в виду, что тяга реактивного двигателя является векторной величиной. Если формулу (2.9) представить в векторной форме, то вектор тяги необязательно будет направлен вдоль оси двигателя, как было принято при выводе, а может отклоняться от нее, например, при полетах со значительными углами атаки или при повороте сопла.

Реактивная тяга обычно рассматривается как сила реакции отделяющихся частиц. Точкой приложения её считают центр истечения - центр среза сопла двигателя, а направление - противоположное вектору скорости истечения продуктов сгорания (или рабочего тела, в случае не химического двигателя). То есть, реактивная тяга :

Энциклопедичный YouTube

    1 / 3

    ✪ Сохранение импульса: реактивное движение

    ✪ Урок 106. Реактивное движение

    ✪ А правда ли, что...?#4-Реактивная тяга?!

    Субтитры

Реактивное движение в природе

Доказательство

M p ⋅ Δ v → Δ t = − Δ m t Δ t ⋅ u → {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}=-{\frac {\Delta m_{t}}{\Delta t}}\cdot {\vec {u}}}

F → p = m p ⋅ a → = − u → ⋅ Δ m t Δ t {\displaystyle {\vec {F}}_{p}=m_{p}\cdot {\vec {a}}=-{\vec {u}}\cdot {\frac {\Delta m_{t}}{\Delta t}}}

Уравнение Мещерского

Если же на ракету , кроме реактивной силы F → p {\displaystyle {\vec {F}}_{p}} , действует внешняя сила F → {\displaystyle {\vec {F}}} , то уравнение динамики движения примет вид:

M p ⋅ Δ v → Δ t = F → + F → p ⇔ {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}={\vec {F}}+{\vec {F}}_{p}\Leftrightarrow } m p ⋅ Δ v → Δ t = F → + (− u → ⋅ Δ m t Δ t) {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}={\vec {F}}+(-{\vec {u}}\cdot {\frac {\Delta m_{t}}{\Delta t}})}

Формула Мещерского представляет собой обобщение

Определение

Понятие «сила тяги» часто встречается в задачах по физике, когда речь идеи о механической мощности или движении транспорта. Вообще говоря, это гипотетическая сила, которая вводится для удобства при решении задач.

Поясним эту мысль. Рассмотрим движение автобуса. Сила тяги (обозначим ее как ${\overline{F}}_t$) в этом случае является силой трения покоя, которая действует на нижние точки колес со стороны поверхности шоссе. Для реализации движения автобуса по дороге колеса транспортного средства вращает двигатель так, чтобы сила трения была направлена в сторону перемещения (рис.1). В этом случае силу тяги определим как силу трения, которая возникает между ведущими колесами и поверхностью, по которой колеса катятся. Если сила трения отсутствует (колесо находится на льду), то автобус не двигается с места, так как колеса проскальзывают. Трение, которое появляется между колесами и поверхностью дороги создает поступательное перемещение.

Так как сила тяги зависит от силы трения, то для увеличения величины $F_t\ $ следует увеличить трение. Трение увеличивается при росте коэффициента трения и (или) с увеличением силы нормального давления, которое зависит от массы тела.

Возникает вопрос о необходимости введения некоей силы тяги вместо того, чтобы использовать привычную силу трения. При выделении из внешних сил, которые действуют на наш автобус силы тяги и силы сопротивления движению уравнения движения имеют универсальный вид, и, используя силу тяги, просто выражается полезная механическая мощность ($N$):

где $\overline{v}$ - скорость движения тела (у нас автобуса).

Отметим, что у силы тяги нет четко определенной формулы, как, например, у гравитационной силы или силы Архимеда и других сил. Ее часто вычисляют, используя второй закон Ньютона и рассматривая все силы, которые действуют на тело.

Реактивная сила тяги

Уравнения движения тел переменной массы и формулу для вычисления реактивной силы получил первым И.В. Мещерский в 1897 г. Формула реактивной силы является основой для расчета силы тяги ракетных и турборакетных двигателей всех систем.

Пусть ракета перемещается со скоростью $\overline{v}$ относительно Земли. Вместе с ней с такой же скоростью движется часть топлива, которая сгорает в ближайшую секунду. При сгорании продукты горения этой части топлива получают дополнительную скорость $\overline{u}$ относительно ракеты. Относительно Земли они имеют скорость $\overline{v}-\overline{u}$. При этом сама ракета увеличивает скорость. После выброса продукты горения не взаимодействуют с ракетой. Поэтому систему ракета плюс продукты горения топлива рассматривают как систему из двух тел, которые взаимодействуют при горении по законам неупругого удара. Пусть реактивный двигатель ракеты каждую секунду выбрасывает массу $\mu $ продуктов горения топлива. Используя закон сохранения импульса и второй закон Ньютона получают, что модуль реактивной силы тяги двигателя ($R$) ракеты равен:

Формула (2) показывает, что реактивная сила, которая действует на тело переменной массы, пропорциональна массе отделяющихся частиц за единицу времени и скорости движения этих частиц относительно тела.

Примеры задач с решением

Пример 1

Задание. Сила тяги, действующая на тело, находящееся на наклонной плоскости (рис.2) направлена вдоль этой плоскости вверх (рис.2). Какова ее величина, если масса тела равна $m$, угол наклона плоскости $\alpha ,\ $ускорение движения тела $a$? Коэффициент трения тела о плоскость равен $\mu $. Тело движется с постоянной скоростью в гору.

Решение. Запишем второй закон Ньютона для сил, действующих на тело, учтем, что тело движется равномерно:

Запишем проекции уравнения (1.1) на оси X и Y:

\[\left\{ \begin{array}{c} X:\ -mg{\sin \alpha +\ }F-F_{tr}=0\left(1.2\right);;\ \\ Y:\ N-mg{\cos \alpha =0\left(1.3\right).\ } \end{array} \right.\]

Сила трения связана с силой нормального давления как:

Выразим из (1.3) $N$, используем выражение (1.4), получим из (1.2) силу тяги:

\[-mg{\sin \alpha +\ }F-\mu mg{\cos \alpha \ }=0\to F=\mu mg{\cos \alpha \ }+mg{\sin \alpha .\ }\]

Ответ. $F=mg(\mu {\cos \alpha \ }+{\sin \alpha).\ }$

Пример 2

Задание. Ракету, массой (в начальный момент времени) равной $M,$ запустили вертикально вверх. Относительная скорость выброса продуктов горения равна $u$, расход горючего составляет $\mu $. Каким будет ускорение ракеты через время $t$ после старта, если сопротивление воздуха не учитывать, поле силы тяжести считать однородным.

Решение. Сделаем рисунок.

На ракету (из условий задачи) будут действовать две силы: сила тяжести и реактивная сила тяги. Запишем уравнение движения ракеты:

В проекции на ось Y уравнение (2.1) запишем как:

Реактивная сила тяги может быть найдена как:

Учитывая равенство (2.3) уравнение преобразуем к виду:

\[\mu u-mg=ma\to a=\frac{\mu u-mg}{m}\left(2.4\right).\]

Масса ракеты в момент времени $t$ равна:

Подставим (2.5) в (2.4) имеем:

Ответ. $a=\frac{\mu u}{M-\mu t}-g.$

    Реактивная сила - см. Тяга двигателя. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994 … Энциклопедия техники

    реактивная сила - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN reaction force …

    реактивная сила - atoveikio jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Veikiamojo kūno atsakomojo poveikio jėga, nukreipta į veikiantįjį kūną. atitikmenys: angl. counter acting force; reactive force vok. Gegenwirkungskraft, f; Rückstosskraft … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Реактивная сила - реактивная тяга, сила тяги реактивного двигателя (См. Реактивный двигатель); см. Реактивная тяга …

    Реактивная сила — см. Тяга двигателя … Энциклопедия «Авиация»

    реактивная сила ЖРД (камеры ЖРД) - реактивная сила двигателя (камеры) Равнодействующая газо и гидродинамических сил, действующих на внутренние поверхности ЖРД (камеры ЖРД) при истечении продуктов сгоранияю [ГОСТ 17655 89] Тематики двигатели ракетные жидкостные Синонимы реактивная… … Справочник технического переводчика

    Реактивная тяга - (реактивная сила) сила реакции (отдачи) струи, создаваемая в результате истечения газов (или другого рабочего тела) из сопла реактивного двигателя. Реактивная тяга приложена непосредственно к корпусу ракетного двигателя и без каких либо… … Морской словарь

    РЕАКТИВНАЯ ТЯГА - (реактивная сила) сила реакции (отдачи) струи рабочего тела (напр., газа), вытекающей из сопла реактивного двигателя и приводящей в движение устройство с двигателем в сторону, противоположную направлению истечения рабочего тела … Большой Энциклопедический словарь

    РЕАКТИВНАЯ ТЯГА - (реактивная сила) сила реакции (отдачи) струи рабочего тела, вытекающей из сопла реактивного двигателя (см.), приводящая в движение двигатель и связанный с ним аппарат в направлении, противоположном направлению реактивной струи. Принцип… … Большая политехническая энциклопедия

    Реактивная тяга - реактивная сила, сила реакции (отдачи) струи газов (или др. рабочего тела (См. Рабочее тело)), вытекающей из сопла реактивного двигателя (См. Реактивный двигатель). Р. т. равнодействующая сил давления рабочего тела на ограничивающие его… … Большая советская энциклопедия

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Силу тяги можно определить через полезную мощность, и скорость транспортного средства (v):

Для автомобиля, поднимающегося в горку, которая имеет уклон , масса автомобиля m сила тяги (F T) войдет в уравнение:

где a – ускорение, с которым движется автомобиль.

Единицы измерения силы тяги

Основной единицей измерения силы в системе СИ является: =Н

В СГС: =дин

Формула силы тяги

В том случае, если тело при перемещении имеет ускорение, то на него кроме всех прочих обязательно действует некоторая сила, которая является силой тяги в рассматриваемый момент времени. В действительности, если тело движется прямолинейно и с постоянной скоростью, то сила тяги также действует, так как тело должно преодолевать силы сопротивления. Обычно силу тяги находят, рассматривая силы, действующие на тело, находя равнодействующую и применяя второй закон Ньютона. Жестко определенной формулы для силы тяги не существует.

Не следует считать, что сила тяги, например, транспортного средства действует со стороны двигателя, так как внутренние силы не могут менять скорость системы как единого целого, что входило бы в противоречие с законом сохранения импульса. Однако следует отметить, что для получения у силы трения покоя необходимого направления, мотор вращает колеса, колеса «цепляются за дорогу» и порождается сила тяги. Теоретически было бы возможно не использовать понятие «сила тяги», а говорить о силе трения покоя или силе реакции воздуха. Но удобнее внешние силы, которые действуют на транспорт делить на две части, при этом одни силы называть силами тяги , а другие — силами сопротивления . Это делается для того, чтобы уравнения движения не потеряли свой универсальный вид и полезная механическая мощность (P) имела простое выражение:

Примеры решения задач

Пример

Задание. На автомобиль имеющий массу 1 т при его движении по горизонтальной поверхности, действует сила трения, которая равна =0,1 от силы тяжести. Какой будет сила тяги, если автомобиль движется с ускорением 2 м/с?

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем второй закон Ньютона:

Спроектируем уравнение (1.1) на оси X и Y:

По условию задачи:

Подставим правую часть выражения (1.4) вместо силы трения в (1.2), получим:

Переведем массу в систему СИ m=1т=10 3 кг, проведем вычисления:

Ответ. F T =2,98 кН

Похожие публикации