Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Реакции присоединения. Окисление бензола и его гомологов Реакция озонирования Гарриеса

УДК 541.13: 669.871.4

Д.С. Гуров, А.В. Даровских, А.Г. Миков, В.И. Скудаев

Пермский национальный исследовательский политехнический университет

ИК-СПЕКТР ПРОДУКТОВ ОЗОНИРОВАНИЯ БЕНЗОЛА

Методом ИК-спектроскопии исследован процесс озонирования бензола. Обнаружено появление новых полос поглощения, отнесенных к колебаниям по связям С-Н и С=0 в продуктах озонирования. Наблюдалось образование нерастворимых озонидов бензола. Высказаны предположения о возможных направлениях процесса.

Ароматические углеводороды, одним из которых является бензол, служат сырьем для производства различных материалов, пластических масс, красителей, медикаментов, средств защиты растений, в производстве взрывчатых веществ, фармацевтических препаратов и др. В то же время бензол и его производные присутствуют как вредные компоненты в отходах предприятий, производящих эти материалы. Реакция бензола с озоном представляет интерес как в целях получения продуктов его озонирования, так и с целью обезвреживания отходов.

Известно, что озон устойчив к действию таких окислителей, как HMnO4, H2O2, OsO4 и др. . При взаимодействии с озоном образуются озониды, которые в присутствии воды на цинковом катализаторе распадаются до глиоксаля . Процесс окисления углеводородов в жидкой фазе протекает по цепному механизму с образованием на начальной стадии гидроперекисей . Опубликована работа по исследованию влияния озонирования на изменение компонентного состава каменноугольного сырого бензола с содержанием бензола около 30 % , из которой, однако, не ясно, что при этом происходит с самим бензолом.

Озонирование бензола проводили в реакторе барботажного типа. В стеклянный реактор диаметром 20 мм заливали 30 мл бензола, озон получали в озонаторе, через который пропускали кислород. Объемная скорость подачи озонокислородной смеси составляла 100 мл/мин при концентрации озона 1,5 % (0,61 моль/м). Процесс проводили при температуре 25 °С, пробы продуктов отбирали с помощью шприца и растворяли в тетрахлориде углерода в соотношении 5 мл пробы на 100 мл раствори-

теля. Раствор пробы помещали в кювету для жидкости с окнами КБг с постоянной толщиной слоя жидкости 0,171 мм и снимали ИК-спектр.

По окончании процесса на поверхности раствора и на стенках реактора обнаружен осадок светло-желтого цвета, который является, по-видимому, смесью озонидов бензола.

На рисунке приведены спектры бензола до начала озонирования и проб продуктов озонирования.

Волновое число, см-1

Рис. ИК-спектры раствора бензола и продуктов его озонирования в тетрахлориде углерода. Время озонирования, ч: 1 - 0; 2 - 2

Тетрахлорид углерода в области более 1550 см-1 не поглощает ИК-излучение. Бензол поглощает в области от 3000 до 3050 см-1. В процессе озонирования в спектрах продуктов появляется полоса с волновым числом 2900 см-1, относительная интенсивность этой полосы по сравнению с полосой бензола 3000 см-1 со временем увеличивается: через 0,5 ч - 0,05, через 1 ч - 0,09, через 1,5 ч - 0,12, через 2 ч -

0,15, через 2,5 ч - 0,16. Согласно литературным данным , эта полоса может быть отнесена к колебаниям по связи С-Н либо по связи О-Н в продуктах окисления бензола в группе, не связанной с кольцом. Вто-

рая новая полоса с заметно возрастающей интенсивностью и с волновым числом 1700 см-1 может быть отнесена к колебаниям по двойной связи С=0 в карбонильной или карбоксильной группе. Поэтому в продуктах озонирования бензола можно ожидать наличия смеси карбоновых кислот, ангидридов, альдегидов и кетонов.

В качестве основной схемы процесса взаимодействия бензола с озоном при 25 °С, как и с кислородом при 400 °С на катализаторе У205, возможно образование смеси малеиновой кислоты и ее ангидрида:

Проведенное исследование показало, что бензольное кольцо, устойчивое к действию многих окислителей, разрушается озоном при обычных температурах.

Список литературы

1. Березин Д.Б., Березин Б.Д., Курс современной органической химии. - М.: Высшая школа, 2001. - 768 с.

2. Разумовский С.Д., Заиков Г.Е. Озон и его реакции с органическими соединениями. - М.: Наука, 1974. - 322 с.

3. Эмануэль Н.М., Денисов Е.Т., Майзус З.К. Цепные реакции окисления углеводородов в жидкой фазе. - М.: Наука, 1965. - 280 с.

4. Семенова С.А., Патраков Ю.Ф. Влияние озонирования на изменение компонентного состава каменноугольного сырого бензола // Журн. прикл. химии. - 2007. - Т. 80, вып. 5. - С. 871-875.

5. Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений: учеб. пособие для хим. вузов / под ред. Б.В. Иоффе. - М.: Высшая школа, 1984. - 336 с.

Всероссийская олимпиада школьников по химии - 2004 года

"ЗАДАЧИ ПО ВЫБОРУ"

ФИЗИЧЕСКАЯ ХИМИЯ

Задача 1.

"Как простодушно сказали бы в позапрошлом -
да, уже позапрошлом – веке."
(Бахыт Кенжеев)

"В начале 1880 года Виктор Мейер начал весьма интересные опыты над плотностями пара галоидов при весьма высоких температурах. Опыты были затем повторены Крафтсом. Результат их тот, что плотности паров галоидов, которыя представляются нормальными для значительных интервалов температуры, делаются меньшими по мере возвышения температуры, различно для различных галоидов.

Температура Плотн. пара хлора Плотн. пара брома Плотн. пара иода
Ниже 440 о 2,45 5,52 8,78
440 о норм. норм. 8,72
900 о норм. норм. 8,11
1200 о норм. 4,5 6,07
1400 о - 1500 о 2,02 3,5 5,31

Предполагая, что наблюдаемое уменьшение плотностей пара галоидов не зависит от значительного изменения коэффициентов расширения газов при указанных температурах, приведенные данные могут быть объяснены…"
("Очерк развития химических воззрений" Н. Меншуткина, СПб., 1888. стр.301-302)

1. Чем может быть объяснено столь существенное изменение "плотности пара" для галогенов?
2. Оцените погрешность определения "плотности пара" (относительные %).
3. Рассчитайте состав "пара" для иода при указанных температурах (мольные доли).
4. Рассчитайте энергию связи I - I (кДж/моль).
5. Определите температуру плавления и кипения иода (о С) и рассчитайте энергию решетки иода, если давление паров над иодом составляет 1 мм рт.ст (133,32 Па) при 43,7 о С; 10 мм рт. ст. при 77,0 о; 100 мм рт.ст. при 122,4 о; 400 мм рт.ст. при 162,8 о.

Задача 2.

HX - одна из самых сильных органических кислот может быть получена по схеме:

Информация о составе представленных на схеме соединений:

Вещество

В последнее время возрос интерес к использованию молекулярного фтора в растворителях. При этом удается контролировать окислительную активность F 2 путем введения в раствор различных веществ. Кислота HX относится к подобным соединениям. Предполагаемые процессы с ее участием:

Уравнение Нернста для молекулярного фтора имеет вид:

Используемые растворители(solv): CH 3 CO 2 H, HCO 2 H, CF 3 CH 2 OH, CH 3 OH, CF 3 CO 2 H.

1. Определите неизвестные вещества на схеме и напишите уравнения реакций.

2. Полагая, что общие концентрации фтора(C 1) и кислоты(С 2) постоянны (С 1 <0,5С 2):
а) Выразите E 0 через E 0 (F 2 /F -) и K a (HF). (Положим E 0 =E 0 (F 2 ,H + /HF), E=E(F 2 ,H + /HF).)
б) Выразите E как функцию от C 2 и С 1 , если рН(С 2 , С 1 , solv) известен.

(Допустимые приближения позволяют обойтись без K 1 -K 3 .)

3. К раствору(п2) прибавили(С 3): а) BF 3 (C 3 <0,5C 1); б) NaX(C 3 < 4.Дайте объяснение тому, что K 1 и K 2 – слабо зависят от K a (solv), в то время как K 3 сильно возрастает при увеличении K a (solv). Расположите представленные растворители в ряд по увеличению K a ; как меняется E(С 2 ,С 1 =сonst) в этом ряду?
5.Подходящий растворитель поддерживает постоянство потенциала в процессе пропускания фтора в раствор и образует с F 2 только легко отделимые от целевого продукта соединения. Предложите подходящий растворитель из списка, обоснуйте.
6.Предложите один способ получения F 2 в лаборатории, не прибегая к электролизу.
7.Почему нельзя точно определить потенциал фтора в процессе эксперимента?

Задача 3.

Озонирование бензола

Реакцию озонирования используют в органической химии для синтеза различных классов соединений и установления строения непредельных соединений.
Озонирование бензола протекает в метилхлориде при –80 o С. Эту реакцию можно описать кинетической схемой:

1) Напишите структурные формулы озонидов А 1 , А 2 , А 3 . Какое вещество образуется при восстановлении A 3 цинком?
2) Другой способ получения озонидов – обезвоживание дигидроксиперекисей вида

фосфорным ангидридом. Напишите схемы получения моно-, ди- и полиозонида из указанной дигидроперекиси.
Одна из качественных реакций на перекисные соединения самого разнообразного строения – взаимодействие их эфирных растворов с раствором сульфата титанила в 60%-ной серной кислоте.
3) Каков аналитический сигнал и чем он обусловлен?
Рассмотрим приведенную выше кинетическую схему. Предположим, что озон взят в небольшом избытке по сравнению с суммарным уравнением.
4) а) На одном графике изобразите кривые зависимости концентраций веществ А 1 , А 2 , А 3 от времени в предположении, что k 1 k 2 k 3 .
б) На одном графике изобразите зависимости концентрации вещества А 1 от времени в двух случаях: 1) k 1 << k 2 ; 2) k 1 k 2 . в) Как вы считаете, какое из двух приближений – (б1) или (б2) – больше соответствует действительности? Почему?
г) Выразите скорость образования A 3 через концентрации озона и бензола при условии, что концентрации интермедиатов А 1 и А 2 стационарны. Чему равен общий порядок реакции?
Концентрацию озона в растворе можно поддерживать постоянной, непрерывно пропуская через раствор озоно-кислородную смесь. Рассмотрим кинетику реакции в этих условиях.

5) а) Выразите скорость образования A 3 через концентрации озона и бензола при условии, что концентрации А 1 и А 2 стационарны. Чему равен общий порядок реакции?
б) Во сколько раз изменится время полупревращения бензола при увеличении его начальной концентрации в 2 раза?
в) Решите кинетическое уравнение из (5а) и найдите зависимость концентрации продукта A 3 от времени. Начальные концентрации бензола и озона обозначьте 0 и 0 .

Задача 4.

Пероксид бензоила (ПБ) и динитрил 2,2"-диметил-2,2"-азодипропановой кислоты (2,2"-азо-бис-изобутиронитрил, АИБН) – стандартные инициаторы радикально-цепных процессов, легко распадающиеся гомолитически уже при небольшом повышении температуры. Энергия активации распада в инертных растворителях составляет 129 кДж/моль для ПБ и 130 кДж/моль для АИБН, а предэкспонт в уравнении Аррениуса (k = A e –E a/RT ) А = 10 14,5 c –1 для ПБ и 10 15,0 c –1 для АИБН. Распад идет по 1-му порядку.

Вопросы и задания.

1. Запишите формулы ПБ и АИБН и уравнения реакций их распада в инертном растворителе. Какие продукты могут при этом образоваться? Назовите их.
2. Связи C–N и N=N в азосоединениях достаточно прочные (295 и 420 кДж/моль соответственно). Почему же тогда АИБН легко образует радикалы при нагревании?
3. В одном из опытов при разложении синего раствора АИБН в течение 1-й минуты выделилось 0,5 мл газа (измеренного при комнатной температуре и давлении 735 мм), а после окончания реакции выделилось 1,250 л этого газа, измеренного при тех же условиях. Рассчитайте константу скорости распада АИБН в условиях опыта (время для нее указывать в секундах).
4. Оцените время, за которое АИБН в растворе распадется на 0,1% при температуре 25 о С, а также время полураспада. При какой температуре АИБН распадется на 50% за 5 часов?
5. Оцените тепловой эффект распада АИБН. Возможно ли его взрывное разложение и если да, то при каких обстоятельствах? Энергия разрыва тройной связи в молекуле азота 945 кДж/моль; энергию связи С–С принять равной 340 кДж/моль.
6. В одной из работ измеряли начальную скорость распада ПБ в кипящем бензоле. Если по полученным данным рассчитать константу скорости распада в предположении о 1-м порядке реакции, то окажется, что рассчитанная таким образом константа зависит от начальной концентрации ПБ:

Для объяснения этих результатов было предположено, что параллельно может идти бимолекулярная реакция распада ПБ. Рассчитайте по данным эксперимента истинную константу скорости мономолекулярного распада ПБ (рекомендуется использовать графический метод).
7. Когда разложение АИБН проводили в ксилоле при 108 о С в присутствии 2,6-диметил-п -бензохинона, спектр электронного парамагнитного резонанса (ЭПР) полученного раствора показал присутствие стабильных свободных радикалов; 7 равноотстоящих линий в спектре с расщеплением 0,573 мТ (миллитесла) свидетельствовали о присутствии в радикале 6 эквивалентных протонов, а расщепление каждой линии на три (с расстоянием между ними 0,137 мТ) – о присутствии двух эквивалентных протонов (T.L.Simandi и др., European Polymer Journal, 1989, том 25, c.501–507). По этим данным изобразите структуру образующегося радикала и подтвердите ее данными ЭПР (расщепление в спектре пропорционально плотности неспаренного электрона на данном атоме). Объясните стабильность образовавшихся радикалов. Как вы думаете, почему авторы опубликовали статью в указанном журнале?
Указание. Зависимость концентрации от времени для реакции 1-го порядка: с = с о e –kt или ln(c o /c ) = kt . Газовая постоянная R = 8,31 Дж/(моль К).


ХИМИЯ И ЖИЗНЬ

Задача 1.

Галичское озеро (Костромская обл., см. карту) имеет изрядно заиленное дно, 25 км в длину, 5 км в ширину, среднюю глубину 1.5 м, кратность водообмена ~ 1 раз в год. В озеро впадают несколько рек, из которых самые многоводные (если так можно говорить о тех жалких ручейках) – Средняя и Чёлсма. Выпадает из озера р. Вёкса. На озере стоит г. Галич (20 тыс. жителей, работают автокрановый завод, кожзавод, хлебозавод, обувная и швейная фабрики).
В четырех точках (см. карту) были отобраны пробы воды. Пробы отбирались с 3 по 8 августа 2003 года. Результаты анализов приведены в таблице.

Точка
Температура
рН
Прозрачность, см
Цветность, град
Щелочность общая, мМ
Щелочность свободная, мМ
Жесткость (Ca 2+ + Mg 2+), мМ
Кальций, мМ
Хлориды, мМ
О 2 , % от насыщения

Примечание: щелочность свободная – концентрация оснований, дающих рН>8.2, щелочность общая – концентрация всех оснований, которые можно оттитровать соляной кислотой. Разница между общей и свободной щелочностью, как правило, обусловлена гидрокарбонатами.
Из результатов видно, что, во-первых, рН воды в озере аномально высок, а во-вторых, концентрация солей в озере примерно в 3 раза меньше, чем в питающих его реках. Обоим фактам было предложено два объяснения. Первое: жители города активно стирают белье, что приводит к попаданию в озеро карбоната и фосфата натрия, защелачиванию воды и связыванию кальция с магнием. Второе: кожзавод сбрасывает в озеро стоки, содержащие известь.

1.Приведите уравнения реакций, приводящие к снижению концентраций катионов и анионов в озере по сравнению с питающими озеро реками по первой и второй гипотезе. Уравнения записать в ионной форме.
2.Является ли снижение концентрации солей в Галичском озере по сравнению с питающими его реками локальным (только в черте города) или по всему озеру? Ответ обоснуйте одним предложением.
3.Какие факты не укладываются в первую гипотезу повышения рН?
4.Какие факты не укладываются во вторую гипотезу повышения рН?
5.Какие факты не укладываются во вторую гипотезу снижения концентрации солей?
Существует также гипотеза, что снижение концентрации солей в озере по сравнению с питающими его реками обусловлено естественными причинами.
6.Какая это может быть причина? Напишите соответствующее уравнение реакции.
7.Как анализ ила может подтвердить или опровергнуть эту гипотезу?
8.Оцените толщину слоя этих веществ, откладывающегося за год, если считать, что отлагаются только они, а их плотность примерно равна 2000 г/дм 3 ?

Для справок: K a (H 2 O+CO 2) = 4.5? 10 -7 , K a (HCO 3 -) = 4.8? 10 -11 , K a (H 2 РO 4 -) = 6.2? 10 -8 , K a (HРO 4 2-) = 5.0? 10 -13 , ПР(CaCO 3) = 4? 10 -9 , ПР(MgCO 3) = 2? 10 -5 , ПР(Ca 3 (PO 4) 2) = 2? 10 -29 .

Задача 2.

Насекомые слишком малы, чтобы искать себе пару в окружающем мире с помощью глаз, как это обычно делает человек. Для этой цели они выделяют специальные вещества – половые аттрактанты, или феромоны. Несколько миллиграммов феромона, выделенного самкой какой-нибудь бабочки, достаточно для того, чтобы привлечь сотни самцов с расстояния в десятки километров. При этом незначительные изменения в структуре феромона (положение или стереоизомерия двойной С=С связи, использование другого стереоизомера хиральной молекулы и т.д.) может привести к привлечению насекомых совсем другого вида или к отпугиванию особей своего вида.
Известно, что самки оливковой мухи Bacroceraoleae привлекают самцов с помощью соединения А , а самцы самок – с помощью соединения Б . При обработке этих соединений разбавленным раствором кислоты образуется одно и то же вещество В , про которое известно следующее:
а) оно содержит 27.6% кислорода и 62.1% углерода, а при обработке пентабромидом фосфора превращается в соединение Г, содержащее 71.75% брома;
б) при нагревании в присутствии каталитических количеств пара -толуолсульфокислоты (TsOH) легко превращается в смесь соединений А и Б ;
в) в результате осуществления цепочки превращений:

его можно трансформировать в соединение З , которое при взаимодействии с одним эквивалентом реактива Гриньяра образует смесь двух спиртов.
Определите возможные структуры соединений А – З и напишите уравнения приведенных здесь реакций

Задача 3.

Иммобилизованные ферменты

Ферменты - это биологические катализаторы белковой природы. Для использования ферментов в различных биотехнологических процессах нередко необходимо закрепить (иммобилизовать) фермент на подходящем нерастворимом носителе (исходный фермент, который подвергают иммобилизации, мы будем называть нативным ферментом).
А. Получение иммобилизованных ферментов.
Для иммобилизации ферментов обычно используют носители, содержащие амино-, гидроксильные или карбоксильные группы, которые не отличаются высокой реакционной способностью при физиологических условиях. Поэтому при образовании ковалентной связи фермент-носитель, последний необходимо сначала активировать. Одним из типов активирующих реагентов являются диальдегиды, например, янтарный

OHC-(CH 2) 2 -CHO.

1. Напишите реакции, происходящие при действии янтарного альдегида на поливиниловый спирт в кислой среде. Для обозначения носителя здесь и далее используйте следующий значок:

2. Напишите уравнение побочной реакции между поливиниловым спиртом и янтарным альдегидом, которая снижает выход фермента, ковалентно связанного с носителем.
3. Напишите реакцию взаимодействия носителя, активированного янтарным альдегидом, с ферментом (рН = 8). В схеме укажите функциональную группу фермента, которая будет вступать во взаимодействие. Для обозначения фермента используйте значок:

4. По боковым группам остатков каких аминокислот будет протекать реакция? Приведите тривиальные названия и формулы боковых радикалов данных аминокислот.
5. Какая еще группа фермента, помимо указанных в ответе на вопрос 4, может вступать во взаимодействие с активированным носителем?
6. Укажите области рН, в которых образующаяся связь фермент-носитель:
а) стабильна
б) нестабильна
Для повышения устойчивости связи фермент-носитель систему, получившуюся в результате реакции, описанной в вопросе 1, обрабатывают боргидридом натрия.
7. Приведите схему данной реакции. где V max = k 2 [E] 0 и K M = (k 2 + k -1)/ k 1

Иммобилизация может влиять на значения как каталитической константы k 2 , так и константы Михаэлиса K M , которая характеризует эффективность связывания фермента с данным субстратом. Катализ иммобилизованными ферментами может протекать в двух режимах:
кинетическом, при котором наблюдаемая скорость определяется каталитическими свойствами самого фермента;
диффузионном, при котором наблюдаемая скорость реакции контролируется диффузией (то есть, определяется скоростью подачи субстрата к ферменту).

Рассмотрим систему с иммобилизованным ферментом, в которой смена режима наблюдается при концентрации субстрата, равной [S] 0,экс.
8. Изобразите на графике в так называемых двойных обратных координатах (1/v от 1/[S] 0) вид зависимости для данной системы в интервале концентраций субстрата от [S] 0,экс /2 до 10[S] 0,экс. Отметьте на оси абсцисс точки, соответствующие концентрациям субстрата [S] 0,экс /2, [S] 0,экс и 10[S] 0,экс. Зависимость, соответствующую кинетическому режиму, отметьте цифрой "1", а диффузионному режиму – цифрой "2".
9. Укажите, чему равны длины отрезков, отсекаемых на оси абсцисс и оси ординат в двойных обратных координатах продолжением зависимости для случая кинетического режима (график из ответа на вопрос 8). Приведите вычисления.
Иммобилизация на полиэлектролитных носителях может влиять на распределение в системе протонов, что приводит к изменению зависимости каталитической активности фермента (и, следовательно, скорости реакции) от рН (в дальнейшем такую зависимость мы будем называть рН-профилем). Пусть для некоторого нативного фермента рН-профиль имеет классический колоколообразный вид (см. ниже).

10. Представьте в координатах (v от рН) рН-профили, соответствующие нативному ферменту (обозначьте каждую ветвь цифрой 1), тому же ферменту, иммобилизованному на полианионном носителе (обозначьте каждую ветвь цифрой 2), и тому же ферменту, иммобилизованному на поликатионном носителе (обозначьте каждую ветвь цифрой 3). Допустите, что иммобилизация не влияет:
а) на величину скорости ферментативной реакции в рН-оптимуме (наивысшая точка колокола);
б) на форму рН-профиля.

Озонирование бензола

Существуют разработки метода синтеза глиоксаля озонированием бензола эквивалентным количеством озона с дальнейшим гидрированием получаемых продуктов для получения глиоксаля. Бензол присоединяет озон, образуя триозонид -- чрезвычайно взрывчатое вещество. Под действием воды озонид разлагается с образованием трех молекул глиоксаля по схеме Однако из-за высокой себестоимости получения озона и чрезвычайной взрывоопасности этот метод не представляет практической ценности.

Окисление глицерина хромовой кислотой

Еще одним возможным методом получения глиоксаля является окисление глицерина хромовой кислотой в присутствии серной кислоты при комнатной температуре. Наряду с глиоксалем образуется формальдегид в соответствии с уравнением реакции:

2Сr2О72-+ЗНОСН2СН(ОН)СН2ОН+16Н4-4Сr3+3(СНО)2+ЗН2СО+14H2 (1.6)

Скорость реакции окисления возрастает с увеличением концентрации ионов водорода. Предполагается, что активной окисляющей формой в реакции (1.6) является шестивалентный хром однозарядного иона HcrO3-. При исследовании реакции окисления глицерина были обнаружены свободные радикал-ионы, показывающие, что реакция окисления глицерина шестивалентным хромом может проходить по механизму как одно-, так и трехэлектронного переноса.

Предположено, что окисление глицерина шестивалентным хромом может идти по следующему механизму:


Механизм предусматривает образование нестабильного бинарного комплекса (1.8), который разлагается со скоростью, определяющей стадию трехэлектронного переноса с получением формальдегида, свободного радикал-иона глиоксаля и трехвалентного иона хрома. Образовавшийся радикал-ион может претерпевать дальнейшее окисление шестивалентным хромом, давая глиоксаль и пятивалентный хром (1.10), либо рекомбинирует, давая двухзарядный ион (1.10), который окисляется пятизарядным ионом хрома, давая две молекулы глиоксаля и трехвалентный ион хрома (1.11). Структура бинарного комплекса не установлена.

Недостатком данного метода получения глиоксаля является периодичность процесса, необходимость очистки образующейся смеси от серной кислоты, соединений хрома и образующегося в ходе процесса формальдегида.

ОПРЕДЕЛЕНИЕ

Бензол (циклогексатриен – 1,3,5) – органическое вещество, простейший представитель ряда ароматических углеводородов.

Формула – С 6 Н 6 (структурная формула – рис. 1). Молекулярная масса – 78, 11.

Рис. 1. Структурные и пространственная формулы бензола.

Все шесть атомов углерода в молекуле бензола находятся в sp 2 гибридном состоянии. Каждый атом углерода образует 3σ-связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Шесть атомов углерода образуют правильный шестиугольник (σ-скелет молекулы бензола). Каждый атом углерода имеет одну негибридизованную р-орбиталь, на которой находится один электрон. Шесть р-электронов образуют единое π-электронное облако (ароматическую систему), которое изображают кружочком внутри шестичленного цикла. Углеводородный радикал, полученный от бензола носит название C 6 H 5 – — фенил (Ph-).

Химические свойства бензола

Для бензола характерны реакции замещения, протекающие по электрофильному механизму:

— галогенирование (бензол взаимодействует с хлором и бромом в присутствии катализаторов – безводных AlCl 3 , FeCl 3 , AlBr 3)

C 6 H 6 + Cl 2 = C 6 H 5 -Cl + HCl;

— нитрование (бензол легко реагирует с нитрующей смесью – смесь концентрированных азотной и серной кислот)

— алкилирование алкенами

C 6 H 6 + CH 2 = CH-CH 3 → C 6 H 5 -CH(CH 3) 2 ;

Реакции присоединения к бензолу приводят к разрушению ароматической системы и протекают только в жестких условиях:

— гидрирование (реакция протекает при нагревании, катализатор – Pt)

— присоединение хлора (протекает под действием УФ-излучения с образованием твердого продукта – гексахлорциклогексана (гексахлорана) – C 6 H 6 Cl 6)

Как и любое органическое соединение бензол вступает в реакцию горения с образованием в качестве продуктов реакции углекислого газа и воды (горит коптящим пламенем):

2C 6 H 6 +15O 2 → 12CO 2 + 6H 2 O.

Физические свойства бензола

Бензол – жидкость без цвета, но обладающая специфическим резким запахом. Образует с водой азеотропную смесь, хорошо смешивается с эфирами, бензином и различными органическими растворителями. Температура кипения – 80,1С, плавления – 5,5С. Токсичен, канцероген (т.е. способствует развитию онкологических заболеваний).

Получение и применение бензола

Основные способы получения бензола:

— дегидроциклизация гексана (катализаторы – Pt, Cr 3 O 2)

CH 3 –(CH 2) 4 -CH 3 → С 6 Н 6 + 4H 2 ;

— дегидрирование циклогексана (реакция протекает при нагревании, катализатор – Pt)

С 6 Н 12 → С 6 Н 6 + 4H 2 ;

— тримеризация ацетилена (реакция протекает при нагревании до 600С, катализатор – активированный уголь)

3HC≡CH → C 6 H 6 .

Бензол служит сырьем для производства гомологов (этилбензола, кумола), циклогексана, нитробензола, хлорбензола и др. веществ. Ранее бензол использовали в качестве присадки к бензину для повышения его октанового числа, однако, сейчас, в связи с его высокой токсичностью содержание бензола в топливе строго нормируется. Иногда бензол используют в качестве растворителя.

Примеры решения задач

ПРИМЕР 1

Задание Запишите уравнения, с помощью которых можно осуществить следующие превращения: CH 4 → C 2 H 2 → C 6 H 6 → C 6 H 5 Cl.
Решение Для получения ацетилена из метана используют следующую реакцию:

2CH 4 → C 2 H 2 + 3Н 2 (t = 1400C).

Получение бензола из ацетилена возможно по реакции тримеризации ацетилена, протекающей при нагревании (t = 600C) и в присутствии активированного угля:

3C 2 H 2 → C 6 H 6 .

Реакция хлорирования бензола с получением в качестве продукта хлорбензола осуществляется в присутствии хлорида железа (III):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.

ПРИМЕР 2

Задание К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль бромной воды. Какое количество вещества и сколько граммов каких продуктов при этом получилось?
Решение Запишем уравнение реакции бромирования бензола в присутствии хлорида железа (III):

C 6 H 6 + Br 2 → C 6 H 5 Br + HBr.

Продуктами реакции являются бромбензол и бромоводород. Молярная масса бензола, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 78 г/моль. Найдем количество вещества бензола:

n(C 6 H 6) = m(C 6 H 6) / M(C 6 H 6);

n(C 6 H 6) = 39 / 78 = 0,5 моль.

По условию задачи бензол вступил в реакцию с 1 моль брома. Следовательно, бензол находится в недостатке и дальнейшие расчеты будем производить по бензолу. Согласно уравнению реакции n(C 6 H 6): n(C 6 H 5 Br) : n(HBr) = 1:1:1, следовательно n(C 6 H 6) = n(C 6 H 5 Br) = : n(HBr) = 0,5 моль. Тогда, массы бромбензола и бромоводорода будут равны:

m(C 6 H 5 Br) = n(C 6 H 5 Br)×M(C 6 H 5 Br);

m(HBr) = n(HBr)×M(HBr).

Молярные массы бромбензола и бромоводорода, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 157 и 81 г/моль, соответственно.

m(C 6 H 5 Br) = 0,5×157 = 78,5 г;

m(HBr) = 0,5×81 = 40,5 г.

Ответ Продуктами реакции являются бромбензол и бромоводород. Массы бромбензола и бромоводорода – 78,5 и 40,5 г, соответственно.

ОЗОН O3 (от греч. ozon-пахнущий) - аллотропная модификация кислорода, которая может существовать во всех трех агрегатных состояниях. Озон - нестабильное соединение, и даже при комнатной температуре медленно разлагается на молекулярный кислород, однако озон не является радикалом.

Физические свойства

Молекулярный вес = 47, 9982 г/моль. Газообразный озон имеет плотность 2,144 10-3 г/см3 при давлении 1 атм и 29° С.

Озон – вещество особое. Он крайне нестабилен и при повышении концентрации легко диспропорционирует по общей схеме: 2О3 -> 3О2.В газообразном виде озон имеет голубоватый оттенок, заметный при содержании в воздухе 15-20% озона.

Озон при нормальных условиях - газ с резким запахом. При очень низких концентрациях, запах озона ощущается как приятная свежесть, но с увеличением концентрации становится неприятным. Запах замерзшего белья - запах озона. К нему легко привыкнуть.

Основное его количество сосредоточено в так называемом "озонном поясе" на высоте 15-30 км. У поверхности земли концентрация озона значительно меньше и абсолютно безопасна для живых существ; существует даже мнение, что полное его отсутствие также отрицательно сказывается на работоспособности человека.

При концентрациях порядка 10 ПДК озон ощущается очень хорошо, но через несколько минут ощущение пропадает практически полностью. Это необходимо иметь в виду при работе с ним.

Однако озон обеспечивает и сохранение жизни на Земле, т.к. озоновый слой задерживает наиболее губительную для живых организмов и растений часть уф-излучения Солнца с длиной волны менее 300 нм, наряду с СО2 поглощает ик-излучение Земли, препятствуя ее охлаждению.

Озон сильнее кислорода растворим в воде. В воде озон разлагается значительно быстрее, чем в газовой фазе, причем исключительно большое влияние на скорость разложения оказывает наличие примесей, особенно ионов металлов.

Рис1. Разложение озона в различных видах воды при температуре 20°С (1 - бидистиллят; 2 - дистиллят; 3 - вода "из под крана"; 4 - фильтрованная озерная вода)

Озон хорошо адсорбируется силикагелем и алюмогелем. При парциальном давлении озона, например 20 мм рт. ст., и при 0° С силикагель поглощает около 0,19% озона по весу. При низких температурах адсорбция заметно ослабевает. В адсорбированном состоянии озон очень устойчив. Потенциал ионизации озона равен 12,8 эВ.

Химические свойства озона

Они отличаются двумя главными чертами - нестойкостью и окисляющей способностью. Примешанный к воздуху в малых концентрациях, он разлагается сравнительно медленно, но при повышении температуры разложение его ускоряется и при температуре более 100° С становится очень быстрым.

Присутствие в воздухе NO2, Cl, а также каталитическое действие окислов металлов - серебра, меди, железа, марганца - ускоряют разложение озона. Озон обладает столь сильными окислительными свойствами, поскольку один из атомов кислорода очень легко отщепляется от его молекулы. Легко переходит в кислород.

Озон окисляет при обычной температуре большинство металлов. Кислые водные растворы озона довольно устойчивы, в щелочных растворах озон быстро разрушается. Металлы переменной валентности (Mn, Co, Fe и др.), многие окислы, перекиси и гидроокиси эффективно разрушают озон. Большинство металлических поверхностей покрывается пленкой окисла в высшем валентном состоянии металла (например, PbO2, AgO или Ag2O3, HgO).

Озон окисляет все металлы, за исключением золота и металлов платиновой группы, реагирует с большинством других элементов, разлагает галогеноводороды (кроме HF), переводит низшие окислы в высшие и т. д.

Он не окисляет золото, платину, иридий, сплав 75%Fe + 25%Cr. Черный сернистый свинец PbS он обращает в белый сернокислый PbSO4, мышьяковистый ангидрид Аs2O3 - в мышьяковый As2O5 и т. д.

Реакция озона с ионами металлов переменной валентности (Мn, Сr и Со) в последние годы находит практическое применение для синтеза полупродуктов для красителей, витамина РР (изоникотиновая кислота) и др. Смеси солей марганца и хрома в кислом растворе, содержащем окисляемое соединение (например, метилпиридины), окисляются озоном. При этом ионы Сr3+ переходят в Сr6+ и окисляют метилпиридины только по метальным группам. В отсутствие солей металлов разрушается преимущественно ароматическое ядро.

Озон реагирует и со многими газами, которые присутствуют в атмосфере. Сероводород H2S при соединении с озоном выделяет свободную серу, сернистый ангидрид SO2 превращается в серный SO3; закись азота N2O - в окись NO, оксид азота NO быстро окисляется до NO2, в свою очередь NO2 также реагирует с озоном, причем в конечном счете образуется N2O5; аммиак NH3 - в азотноаммиачную соль NH4NO3.

Одна из важнейших реакций озона с неорганическими веществами - разложение им йодистого калия. Эта реакция широко используется для количественного определения озона.

Озон реагирует в ряде случаев и с твердыми веществами, образуя озониды. Выделены озониды щелочных металлов, щелочноземельных металлов: стронция, бария, причем температура их стабилизации растет в указанном ряду; Са(O3) 2 стабилен при 238 К, Ва(O3) 2 при 273 К. Озониды разлагаются с образованием надперекиси, например NaO3 -> NaO2 + 1/2O2. Различные озониды образуются также при реакциях озона с органическими соединениями.

Озон окисляет многочисленные органические вещества, насыщенные, ненасыщенные и циклические углеводороды. Опубликовано много работ по исследованию состава продуктов реакции озона с различными ароматическими углеводородами: бензолом, ксилолами, нафталином, фенантреном, антраценом, бензантраценом, дифениламином, хинолином, акриловой кислотой и др. Он обесцвечивает индиго и многие другие органические красители, благодаря чему им пользуются даже для отбелки тканей.

Скорость реакции озона с двойной связью С=С в 100 000 раз выше, чем скорость реакции озона с одинарной связью С-С. Поэтому от озона в первую очередь страдают каучуки и резины. Озон реагирует с двойной связью с образованием промежуточного комплекса:

Эта реакция идет достаточно быстро уже при температурах ниже 0°С. В случае предельных соединении озон является инициатором обычной реакции окисления:

Интересно взаимодействие озона с некоторыми органическими красителями, которые сильно флюоресцируют при наличии озона в воздухе. Таковы, например, эйхрозин, рибофлавин и люминол (триаминофталгидразид), и особенно, родамин-В и, сходный с ним родамин-С.

Высокие окислительные свойства озона, разрушающие органические вещества и окисляющие металлы (в особенности железо) до нерастворимой формы, способность разлагать растворимые в воде газообразные соединения, насыщать водные растворы кислородом, низкая стойкость озона в воде и самоликвидация его опасных для человека свойств - все это в совокупности делает озон наиболее привлекательным веществом для подготовки хозяйственной воды и обработки различных стоков.

Синтез озона

Озон образуется в газовой среде, содержащей кислород, если возникнут условия, при которых кислород диссоциирует на атомы. Это возможно во всех формах электрического разряда: тлеющем, дуговом, искровом, коронном, поверхностном, барьерном, безэлектродном и т.п. Основной причиной диссоциации является столкновение молекулярного кислорода с электронами, ускоренными в электрическом поле.

Кроме разряда диссоциацию кислорода вызывают УФ-излучение с диной волны менее 240 нм и различные частицы высокой энергии: альфа-, бета-, гамма - частицы, рентгеновские лучи и т.п. Озон получают также при электролизе воды.

Практически во всех источниках образования озона существует группа реакций, в результате которых озон разлагается. Они мешают образованию озона, но реально существуют, и их необходимо учитывать. Сюда входит термическое разложение в объеме и на стенках реактора, его реакции с радикалами и возбужденными частицами, реакции с добавками и примесями, которые могут контактировать с кислородом и озоном.

Полный механизм состоит из значительного числа реакций. Реальные установки, на каком бы принципе они ни работали, показывают высокие энергетические затраты на выработку озона. КПД генератора озона зависит от того, на какую – полную или активную – мощность рассчитывается единица массы образовавшегося озона.

Барьерный разряд

Под барьерным разрядом понимают разряд, возникающий между двумя диэлектриками или диэлектриком и металлом. Из-за того, что электрическая цепь разорвана диэлектриком, питание осуществляется только переменным током. Впервые озонатор, близкий к современным, был предложен в 1897 г. Сименсом.

При небольших мощностях озонатор можно не охлаждать, так как выделяющееся тепло уносится с потоком кислорода и озона. В промышленных производствах озон также синтезируют в дуговых озонаторах (плазмотроны), в генераторах озона тлеющего (лазеры) и поверхностного разряда.

Фотохимический способ

Основная доля произведенного на Земле озона в природе образуется фотохимическим способом. В практической деятельности человека фотохимические методы синтеза играют меньшую роль, чем синтезы в барьерном разряде. Главная область их использования - получение средних и малых концентраций озона. Такие концентрации озона требуются, например, при испытании резинотехнических изделий на устойчивость к растрескиванию под действием атмосферного озона. На практике для производства озона данным методом применяются ртутные и эксимерные ксеноновые лампы.

Электролитический метод синтеза

Первое упоминание об образовании озона в электролитических процессах относится к 1907 г. Однако до настоящего времени механизм его образования остается неясным.

Обычно в качестве электролита применяют водные растворы хлорной или серной кислоты, электроды изготовляют из платины. Использование кислот, меченных О18, показало, что они не отдают своего кислорода при образовании озона. Поэтому брутто-схема должна учитывать только разложение воды:

Н2О + O2 -> O3 + 2Н+ + e-

с возможным промежуточным образованием ионов или радикалов.

Образование озона под действием ионизирующего излучения

Озон образуется в ряде процессов, сопровождающихся возбуждением молекулы кислорода либо светом, либо электрическим полем. При облучении кислорода ионизирующей радиацией также могут возникать возбужденные молекулы, и наблюдается образование озона. Образование озона под действием ионизирующего излучения до настоящего времени не было использовано для синтеза озона.

Образование озона в СВЧ-поле

При пропускании струи кислорода через СВЧ-поле наблюдалось образование озона. Этот процесс мало изучен, хотя генераторы, основанные на этом явлении, часто используются в лабораторной практике.

Применение озона в быту и влияние его на человека

Озонирование воды, воздуха и других веществ

Озонированная вода не содержит токсичных галогенметанов - типичных примесей стерилизации воды хлором. Процесс озонирования проводят в барботажных ваннах или смесителях, в которых очищенная от взвесей вода смешивается с озонированным воздухом или кислородом. Недостаток процесса - быстрое разрушение О3 в воде (период полураспада 15-30 минут).

Озонирование применяют также в пищевой промышленности для стерилизации холодильников, складов, устранения неприятного запаха; в медицинской практике - для обеззараживания открытых ран и лечения некоторых хронических заболеваний (трофические язвы, грибковые заболевания), озонирования венозной крови, физиологических растворов.

Современные озонаторы, в которых озон получают с помощью электрического разряда в воздухе или в кислороде, состоят из генераторов озона и источников питания и являются составной частью озонаторных установок, включающих в себя, кроме озонаторов, вспомогательные устройства.

В настоящее время озон является газом, используемым в так называемых озоновых технологиях: очистка и подготовка питьевой воды, очистка сточных вод (бытовых и промышленных стоков), отходов газов и др.

В зависимости от технологии использования озона производительность озонатора может составлять от долей грамма до десятков килограмм озона в час. Специальные озонаторы применяются для газовой стерилизации медицинского инструментария и мелкого оборудования. Стерилизация осуществляется в искусственно увлажненной озонокислородной среде, заполняющей стерилизационную камеру. Цикл стерилизации состоит из стадии замещения воздуха в стерилизационной камере увлажненной озонокислородной смесью, стадии стерилизационной выдержки и стадии замещения озонокислородной смеси в камере микробиологически очищенным воздухом.

Озонаторы, применяемые в медицине для озонотерапии, имеют широкий диапазон регулирования концентрации озонокислородной смеси. Гарантированная точность вырабатываемой концентрации озонокислородной смеси контролируется системой автоматики озонатора и автоматически поддерживается.

Биологическое действие озона

Биологическое действие озона зависит от способа его применения, дозы и концентрации. Многие из его эффектов в разных диапазонах концентраций проявляются в различной степени. В основе лечебного действия озонотерапии лежит применение озонокислородных смесей. Высокий окислительно-восстановительный потенциал озона обуславливает его системное (восстановление кислородного гомеостаза) и локальное (выраженное дезинфицирующее) лечебное действие.

Впервые озон как антисептическое средство был использован А. Wolff в 1915 г. для лечения инфицированных ран. В последние годы озонотерапию успешно применяют практически во всех областях медицины: в неотложной и гнойной хирургии, общей и инфекционной терапии, гинекологии, урологии, гастроэнтерологии, дерматологии, косметологии и др. Использование озона обусловлено его уникальным спектром воздействия на организм, в т.ч. иммуномодулирующим, противовоспалительным, бактерицидным, противовирусным, фунгицидным и др.

Однако нельзя и отрицать, что методы использования озона в медицине, несмотря на явные преимущества по многим биологическим показателям, до сих пор широкого применения не получили. Согласно литературным данным высокие концентрации озона являются абсолютно бактерицидными практически для всех штаммов микроорганизмов. Поэтому озон используется в клинической практике как универсальный антисептик при санации инфекционно-воспалительных очагов различной этиологии и локализации.

В литературе встречаются данные о повышенной эффективности антисептических препаратов после их озонирования при лечении острых гнойных хирургических заболеваний.

Выводы относительно бытового использования озона

Прежде всего, нужно безоговорочно подтвердить факт применение озона в практике врачевания во многих областях медицины, как терапевтического и обеззараживающего средства, однако говорить о широком его применении пока не приходится.

Озон воспринимается человеком с наименьшими побочными аллергическими проявлениями. И даже если в литературе можно найти упоминание об индивидуальной непереносимости O3, то эти случаи никак не могут быть сопоставимы, например, с хлорсодержащими и прочими галогенопроизводными антибактериальными препаратами.

Озон - трёхатомный кислород и наиболее экологичен. Кому не знаком его запах “свежести” – в летние жаркие дни после грозы?! Постоянное присутствие его в земной атмосфере испытывает на себе любой живой организм.

Обзор составлен по материалам сети Интернет.

Похожие публикации