Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

5 число четное или нечетное. Четные и нечетные числа в нумерологии

  • Нечётное число - целое число , которое не делится на без остатка : …, −3, −1, 1, 3, 5, 7, 9, …

Если m чётно, то оно представимо в виде m = 2 k, а если нечётно, то в виде m = 2 k + 1, где k \in \mathbb Z.

История и культура

Понятие чётности чисел известно с глубокой древности и ему часто придавалось мистическое значение. В китайской космологии и натурософии чётные числа соответствуют понятию «инь », а нечётные - «ян » .

В разных странах существуют связанные с количеством даримых цветов традиции. Например в США , Европе и некоторых восточных странах считается, что чётное количество даримых цветов приносит счастье . В России и странах СНГ чётное количество цветов принято приносить лишь на похороны умершим. Однако, в случаях, когда в букете много цветов (обычно больше ), чётность или нечётность их количества уже не играет никакой роли. Например, вполне допустимо подарить даме букет из 12, 14, 16 и т. д. цветов или срезов кустового цветка, имеющих множество бутонов , у которых они, в принципе, не подсчитываются. Тем более это относится к бо́льшему количеству цветов (срезов), даримых в других случаях.

Практика

В высших учебных заведениях со сложными графиками учебного процесса применяются чётные и нечётные недели. Внутри этих недель отличается расписание учебных занятий и в некоторых случаях время их начала и окончания. Такая практика применяется для равномерности распределения нагрузки по аудиториям, учебным корпусам и для ритмичности занятий по дисциплинам с малой аудиторной нагрузкой (1 раз в 2 недели)

В графиках движения поездов применяются чётные и нечётные номера поездов, зависящие от направления движения (прямое или обратное). Соответственно чётностью/нечётностью обозначается направление, в котором проходит поезд через каждую станцию.

С чётными и нечётными числами месяца иногда увязаны графики движения поездов, которые организованы через день.

Напишите отзыв о статье "Чётные и нечётные числа"

Примечания

Ссылки

  • Последовательность A005408 в OEIS : нечётные числа
  • Последовательность A005843 в OEIS : чётные числа
  • Последовательность A179082 в OEIS : чётные числа с чётной суммой цифр в десятичной записи

Отрывок, характеризующий Чётные и нечётные числа

– Так, так, – сказал князь Андрей, обращаясь к Алпатычу, – все передай, как я тебе говорил. – И, ни слова не отвечая Бергу, замолкшему подле него, тронул лошадь и поехал в переулок.

От Смоленска войска продолжали отступать. Неприятель шел вслед за ними. 10 го августа полк, которым командовал князь Андрей, проходил по большой дороге, мимо проспекта, ведущего в Лысые Горы. Жара и засуха стояли более трех недель. Каждый день по небу ходили курчавые облака, изредка заслоняя солнце; но к вечеру опять расчищало, и солнце садилось в буровато красную мглу. Только сильная роса ночью освежала землю. Остававшиеся на корню хлеба сгорали и высыпались. Болота пересохли. Скотина ревела от голода, не находя корма по сожженным солнцем лугам. Только по ночам и в лесах пока еще держалась роса, была прохлада. Но по дороге, по большой дороге, по которой шли войска, даже и ночью, даже и по лесам, не было этой прохлады. Роса не заметна была на песочной пыли дороги, встолченной больше чем на четверть аршина. Как только рассветало, начиналось движение. Обозы, артиллерия беззвучно шли по ступицу, а пехота по щиколку в мягкой, душной, не остывшей за ночь, жаркой пыли. Одна часть этой песочной пыли месилась ногами и колесами, другая поднималась и стояла облаком над войском, влипая в глаза, в волоса, в уши, в ноздри и, главное, в легкие людям и животным, двигавшимся по этой дороге. Чем выше поднималось солнце, тем выше поднималось облако пыли, и сквозь эту тонкую, жаркую пыль на солнце, не закрытое облаками, можно было смотреть простым глазом. Солнце представлялось большим багровым шаром. Ветра не было, и люди задыхались в этой неподвижной атмосфере. Люди шли, обвязавши носы и рты платками. Приходя к деревне, все бросалось к колодцам. Дрались за воду и выпивали ее до грязи.
Князь Андрей командовал полком, и устройство полка, благосостояние его людей, необходимость получения и отдачи приказаний занимали его. Пожар Смоленска и оставление его были эпохой для князя Андрея. Новое чувство озлобления против врага заставляло его забывать свое горе. Он весь был предан делам своего полка, он был заботлив о своих людях и офицерах и ласков с ними. В полку его называли наш князь, им гордились и его любили. Но добр и кроток он был только с своими полковыми, с Тимохиным и т. п., с людьми совершенно новыми и в чужой среде, с людьми, которые не могли знать и понимать его прошедшего; но как только он сталкивался с кем нибудь из своих прежних, из штабных, он тотчас опять ощетинивался; делался злобен, насмешлив и презрителен. Все, что связывало его воспоминание с прошедшим, отталкивало его, и потому он старался в отношениях этого прежнего мира только не быть несправедливым и исполнять свой долг.
Правда, все в темном, мрачном свете представлялось князю Андрею – особенно после того, как оставили Смоленск (который, по его понятиям, можно и должно было защищать) 6 го августа, и после того, как отец, больной, должен был бежать в Москву и бросить на расхищение столь любимые, обстроенные и им населенные Лысые Горы; но, несмотря на то, благодаря полку князь Андрей мог думать о другом, совершенно независимом от общих вопросов предмете – о своем полку. 10 го августа колонна, в которой был его полк, поравнялась с Лысыми Горами. Князь Андрей два дня тому назад получил известие, что его отец, сын и сестра уехали в Москву. Хотя князю Андрею и нечего было делать в Лысых Горах, он, с свойственным ему желанием растравить свое горе, решил, что он должен заехать в Лысые Горы.
Он велел оседлать себе лошадь и с перехода поехал верхом в отцовскую деревню, в которой он родился и провел свое детство. Проезжая мимо пруда, на котором всегда десятки баб, переговариваясь, били вальками и полоскали свое белье, князь Андрей заметил, что на пруде никого не было, и оторванный плотик, до половины залитый водой, боком плавал посредине пруда. Князь Андрей подъехал к сторожке. У каменных ворот въезда никого не было, и дверь была отперта. Дорожки сада уже заросли, и телята и лошади ходили по английскому парку. Князь Андрей подъехал к оранжерее; стекла были разбиты, и деревья в кадках некоторые повалены, некоторые засохли. Он окликнул Тараса садовника. Никто не откликнулся. Обогнув оранжерею на выставку, он увидал, что тесовый резной забор весь изломан и фрукты сливы обдерганы с ветками. Старый мужик (князь Андрей видал его у ворот в детстве) сидел и плел лапоть на зеленой скамеечке.
Он был глух и не слыхал подъезда князя Андрея. Он сидел на лавке, на которой любил сиживать старый князь, и около него было развешено лычко на сучках обломанной и засохшей магнолии.
Князь Андрей подъехал к дому. Несколько лип в старом саду были срублены, одна пегая с жеребенком лошадь ходила перед самым домом между розанами. Дом был заколочен ставнями. Одно окно внизу было открыто. Дворовый мальчик, увидав князя Андрея, вбежал в дом.
Алпатыч, услав семью, один оставался в Лысых Горах; он сидел дома и читал Жития. Узнав о приезде князя Андрея, он, с очками на носу, застегиваясь, вышел из дома, поспешно подошел к князю и, ничего не говоря, заплакал, целуя князя Андрея в коленку.

Что означают чётные и нечётные числа в духовной нумерологии. В изучении языка чисел это очень важная тема! Чем по своей сути чётные числа отличаются от нечётных чисел?

Нечётные числа в нумерологии – солнечные, мужской природы, кислотные, электрические, динамичные. При группировании нечётных чисел, одно число останется без своей пары (1 и 3; 5 и 7; 9). Эти числа являются слагаемые (их складывают с чем-либо).

Чётные числа – лунные, женской природы, щелочные, магнетические, статичные. Числа данной группы вычитаемые или уменьшаемые. Они статичны и остаются без движения, потому что имеют чётные группы пар (2 и 4; 6 и 8).

Чётные числа в нумерологии

Общеизвестно, что чётные числа – те числа которые делятся на два. А что означают чётные числа относительно духовной нумерологии? Какова нумерологическая суть "деления на два"? А суть в том, что все числа которые делятся на два, несут в себе некоторые свойства двойки.

У цифры 2 несколько значений. Во-первых, это самая "человечная" цифра в нумерологии. То есть, цифра 2 отражает в себе всю гамму человеческих слабостей, недостатков и достоинств – точнее, то, что в обществе принято считать достоинствами и недостатками, "правильностями" и "неправильностями".

А поскольку данные ярлыки "правильности" и "неправильности" отражают наши ограниченные взгляды на мир, то и двойка вправе считаться самым ограниченным, самым "тупым" числом в нумерологии. Отсюда понятно, что чётные числа гораздо более "твердолобы" и прямолинейны, чем их нечётные собратья, которые на два не делятся.

Это, впрочем, не говорит о том, что чётные числа хуже нечётных чисел. Просто они другие и отражают иные формы человеческого бытия и сознания в сравнении с нечётными числами. Чётные числа в духовной нумерологии всегда подчиняются законам обычной, материальной, "земной" логики. Почему?

Потому что другое значение двойки: стандартно-логическое мышление. И все чётные числа в духовной нумерологии так или иначе, подчиняются определённым логическим правилам восприятия действительности.

Элементарный пример: если камень подбросить вверх, он, набрав определённую высоту, устремится затем к земле. Так "думают" чётные числа. А нечётные числа запросто предположат, что камень улетит в космос; или не долетит, а застрянет где-нибудь в воздухе... надолго, на века. Или просто растворится! Чем нелогичнее гипотеза, тем ближе она к нечётным числам.

Нечётные числа в нумерологии

Нечётными называют числа, которые не делятся на два. С позиции духовной нумерологии нечётные числа подчиняются не материальной, а духовной логике.

Что, кстати, даёт пищу для размышления: почему число цветов в букете для живого человека нечётное, а для мёртвого – чётное... Не потому ли, что материальная логика (логика в рамках "да-нет") мертва относительно души человека?

Видимые совпадения материальной логики и духовной происходят очень часто. Но пусть это не вводит вас в заблуждение. Логика духа, то есть логика нечётных чисел, никогда в полной мере не прослеживается на внешних, физических уровнях человеческого бытия и сознания.

Возьмём для примера число 3 – число любви. Мы разглагольствуем о любви на каждом шагу. Мы признаёмся в ней, мечтаем о ней, украшаем ею свою жизнь и чужую жизнь.

Но что на самом деле мы знаем о любви? О той всепроникающей Любви, которая пронизывает собой все сферы Мироздания. Разве мы можем согласиться и принять, что в ней столько же холода, сколько и тепла, столько же ненависти, сколько доброты?! В состоянии ли мы осознать, что именно эти парадоксы составляют высшую, творческую суть Любви?!

Парадоксальность – вот одно из ключевых свойств нечётных чисел. В толковании нечётных чисел надо понимать: не всегда то, что кажется человеку, является действительно существующим. Но в то же время, если что-то кому-то кажется, значит оно уже существует. Есть различные уровни Существования, и иллюзия – один из них...

Кстати, зрелость ума характеризуется способностью воспринимать парадоксы. Поэтому для объяснения нечётных чисел требуется чуть больше "мозгов", чем для объяснения чётных чисел.

В чём главное отличие чётных чисел от нечётных?

Чётные числа более предсказуемы (кроме числа 10), основательны и последовательны. События и люди, связанные с чётными числами, более устойчивы и объяснимы. Вполне доступны для внешних изменений, но только для внешних! Внутренние перемены – область нечётных чисел...

Нечётные числа – взбалмошны, свободолюбивы, неустойчивы, непредсказуемы. Они всегда преподносят сюрпризы. Вот вроде и знаешь смысл какого-то нечётного числа, а оно, это число, вдруг начинает вести себя так, что заставляет тебя заново пересмотреть чуть ли не всю твою жизнь...

Четные числа - это те, которые делятся на 2 без остатка (например, 2, 4, 6 и т.п.). Каждое такое число можно записать в виде 2*K, подобрав подходящее целое K (например, 4 = 2 х 2, 6 = 2 х 3, и т.д.).

Нечетные числа - это те, которые при делении на 2 дают в остатке 1 (например, 1, 3, 5 и т.п.). Каждое такое число можно записать в виде 2*K + 1, подобрав подходящее целое K (например, 3 = 2 х 1 + 1, 5 = 2 х 2 + 1, и т.д.).

Сложение и вычитание:

Чётное ± Чётное = Чётное

Чётное ± Нечётное = Нечётное

Нечётное ± Чётное = Нечётное

Нечётное ± Нечётное = Чётное

Умножение:

Чётное × Чётное = Чётное

Чётное × Нечётное = Чётное

Нечётное × Нечётное = Нечётное

Рассмотрим также свойства четных и нечетных чисел, важные для решения задач.

1. Если хотя бы один множитель произведения двух (или нескольких) чисел четен, то и все произведение четно.

2. Если каждый множитель произведения двух (или нескольких) чисел нечетен, то и все произведение нечетно.

3. Сумма любого количества четных чисел - число четное.

4. Сумма четного и нечетного чисел - число нечетное.

5. Сумма любого количества нечетных чисел - число четное, если число слагаемых четно, и нечетное, если число слагаемых нечетно.

В справедливости этих свойств мы убедимся при решении задач.

Задача 1. В магазин "Все для собак и кошек" привезли новые игрушки. Могут ли десять игрушек ценой в 3, 5 или 7 рублей стоить в сумме 53 рубля?

Решение. Сумма четного количества нечетных чисел четна. У нас есть 10 чисел (цена одной игрушки), все они нечетные, значит их сумма должна быть четна. Но 53 - число нечетное, поэтому получить его в виде суммы 10 нечетных чисел нельзя.

Задача 2. Хозяйка купила общую тетрадь объемом 96 листов и пронумеровала все ее страницы по порядку числами от 1 до 192. Щенок Антошка выгрыз из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться 1990?

Решение: На каждом листе сумма номеров страниц нечетна, а сумма 25 нечетных чисел – нечетна.

Задача 3. У Антоши было 5 плиток шоколада. Может ли Антоша, поделив каждую плитку на 9, 15 или 25 кусочков, получить всего 100 кусков шоколада?

Ответ. Нет, т.к. если сложить 5 нечетных чисел, получим нечетный результат. А 100 четно.

Задача 4 . На плоскости расположено 9 шестеренок, соединенных по цепочке (первая со второй, вторая с третьей... 9-я с первой). Могут ли они вращаться одновременно?

Решение: Нет, не могут. Если бы они могли вращаться, то в замкнутой цепочке чередовалось бы два вида шестеренок: вращающиеся по часовой стрелке и против часовой стрелки (для решения задачи не имеет никакого значения, в каком именно направлении вращается первая шестеренка!) Тогда всего должно быть четное число шестеренок, а их 9 штук?! ч.и.т.д. (знак "?!" обозначает получение противоречия)

Задача 5 . Четна или нечетна сумма всех натуральных чисел от 1 до 17?

Из 17 натуральных чисел 8 четных:

2,4,6,8,10,12,14,16, остальные 9 нечетны. Сумма всех этих четных чисел четна (свойство 3), сумма нечетных нечетна (свойство 5). Тогда сумма всех 17 чисел нечетна как сумма четного и нечетного чисел (свойство 4).

Ответ: нечетна.

Задача 6 . В пятиэтажном доме с четырьмя подъездами подсчитали число жителей на каждом этаже и, кроме того, в каждом подъезде. Могут ли все полученные 9 чисел быть нечетными?

Обозначим число жителей на этажах соответственно через a1 a2 a3 а4, a5, a число жителей в подъездах соответственно через b1 b2 b3 b4. Тогда общее число жителей дома можно подсчитать двумя способами - по этажам и по подъездам:

а1 + а2 + а3 + а4 + а5 = b1, + b2 + b3 + b4.

Если бы все эти 9 чисел были нечетными, то сумма в левой части записанного равенства была бы нечетной, а сумма в правой части - четной. Следовательно, это невозможно.

Ответ: не могут.

Задача 7 . Четно или нечетно произведение (7а + b - 2с + 1)(3а – 5b + 4с + 10), где числа a, b, с - целые?

Решение. Можно перебирать случаи, связанные с четностью или нечетностью чисел а, b и с (8 случаев!), но проще поступить иначе. Сложим множители:

(7а + b - 2с + 1) + (За -5 b + 4с+ 10) = 10а - 4 b + 2с + 11.

Так как полученная сумма нечетна, то один из множителей данного

произведения четен, а другой нечетен. Следовательно, само произведение четно.

Ответ: четно.

Задача 8 . Щенок Антошка нацарапал на доске: 1*2*3*4*5*6*7*8*9 = 33, причем вместо каждой звездочки он поставил либо плюс, либо минус. Филя переправил несколько знаков на противоположные и в результате вместо числа 33 получил число 32. Верно ли, что по меньшей мере один из щенков ошибся при подсчете?

Если все звездочки заменить на плюсы, то полученная сумма будет нечетной, а, следовательно, и данная сумма - тоже. Поэтому по меньшей мере ошибся Филя.

Ответ: верно.

А теперь основные идеи четности: (!) Все эти идеи можно на олимпиаде вставлять в текст решения задачи.

1. Если в некоторой замкнутой цепочке чередуются объекты двух видов, то их четное число (и каждого вида поровну).

2. Если в некоторой цепочке чередуются объекты двух видов, а начало и конец цепочки разных видов, то в ней четное число объектов, если начало и конец одного вида, то нечетное число. (четное число объектов соответствует нечетному числу переходов между ними и наоборот!)

2". Если у объекта чередуются два возможных состояния, а исходное и конечное состояния различны, то периодов пребывания объекта в том или ином состоянии - четное число, если исходное и конечное состояния совпадают - то нечетное.

3. Обратно: по четности длины чередующийся цепочке можно узнать, одного или разных видов ее начало и конец.

3". Обратно: по числу периодов пребывания объекта в одном из двух возможных чередующихся состояний можно узнать, совпадает ли начальное состояние с конечным.

4. Если любые предметы можно разбить на пары, то их количество четно.

5. Если нечетное число предметов почему-то удалось разбить на пары, то какой-то из них будет парой к самому себе, причем такой предмет может быть не один (но их всегда нечетное число).

Итак, я начну свою историю с четных чисел. Какие числа четные? Любое целое число, которое можно разделить на два без остатка, считается четным. Кроме того, четные числа заканчиваются на одну из данного ряда цифру: 0, 2, 4, 6 или 8.

Например: -24, 0, 6, 38 — все это четные числа.

m = 2k — общая формула написания четных чисел, где k - целое число. Данная формула может понадобиться для решения многих задач или уравнений в начальных классах.

Есть еще один вид чисел в огромном царстве математики — это нечетные числа. Любое число, которое нельзя разделить на два без остатка, а при делении на два остаток равен единице, принято называть нечетным. Любое из них заканчивается на одну из таких цифр: 1, 3, 5, 7 или 9.

Пример нечетных чисел: 3, 1, 7 и 35.

n = 2k + 1 — формула, с помощью которой можно записать любые нечетные числа, где k - целое число.

Сложение и вычитание четных и нечетных чисел

В сложении (или вычитании) четных и нечетных чисел есть некоторая закономерность. Мы представили ее с помощью таблицы, которая находится ниже, для того чтобы вам было проще понять и запомнить материал.

Операция

Результат

Пример

Четное + Четное

Четное + Нечетное

Нечетное

Нечетное + Нечетное

Четные и нечетные числа будут вести себя так же, если вычитать, а не суммировать их.

Умножение четных и нечетных чисел

При умножении четные и нечетные числа ведут себя закономерно. Вам заранее будет известно, получится результат четным или нечетным. В таблице ниже представлены все возможные варианты для лучшего усвоения информации.

Операция

Результат

Пример

Четное * Четное

Четное * Нечетное

Нечетное * Нечетное

Нечетное

А теперь рассмотрим дробные числа.

Десятичная запись числа

Десятичные дроби — это числа со знаменателем 10, 100, 1000 и так далее, которые записаны без знаменателя. Целую часть отделяют от дробной с помощью запятой.

Например: 3,14; 5,1; 6,789 — это все

С десятичными дробями можно производить различные математические действия, такие как сравнение, суммирование, вычитание, умножение и деление.

Если вы хотите сравнять две дроби, сначала уравняйте количество знаков после запятой, приписывая к одному из них нули, а потом, отбросив запятую, сравните их как целые числа. Рассмотрим это на примере. Сравним 5,15 и 5,1. Для начала уравняем дроби: 5,15 и 5,10. Теперь запишем их, как целые числа: 515 и 510, следовательно, первое число больше, чем второе, значит 5,15 больше, чем 5,1.

Если вы хотите суммировать две дроби, следуйте такому простому правилу: начните с конца дроби и суммируйте сначала (например) сотые, потом десятые, затем целые. С помощью этого правила можно легко вычитать и умножать десятичные дроби.

А вот делить дроби нужно как целые числа, в конце отсчитывая, где надо поставить запятую. То есть сначала делите целую часть, а потом - дробную.

Так же десятичные дроби следует округлять. Для этого выберите, до какого разряда вы хотите округлить дробь, и замените соответствующее количество цифр нулями. Имейте ввиду, если следующая за этим разрядом цифра лежала в пределах от 5 до 9 включительно, то последнюю цифру, которая осталась, увеличивают на единицу. Если же следующая за этим разрядом цифра лежала в пределах от 1 до 4 включительно, то последнюю оставшуюся не изменяют.

Все натуральные числа с точки зрения делимости на 2 раз­биваются на два множества: множество четных чисел и множество нечетных чисел .

Четные числа делятся нацело на 2, а нечетные при делении на 2 дают остаток 1. 0 число четное.

При решении задач, в которых используются свойство четность важно помнить и применять следующие правила:

  • Сумма и разность двух нечетных чисел является четным числом
  • Сумма и разность двух четных чисел является четным числом.
  • Сумма и разность двух чисел, из которых одно четное , а другое нечетное , является нечетным числом.
  • Произведение двух нечетных чисел является нечетным числом .
  • Произведение двух чисел, из которых одно четное , явля­ется четным числом.

Разберем несколько примеров.

Задача 1.

Можно ли разменять 25 рублей при помощи десяти купюр достоинством 1, 3 и 5 рублей?

Решение.

Нельзя. И вовсе не потому, что таких купюр не существует. Сумма четного количества нечетных слагаемых не может быть нечетным числом.

Ответ: Нельзя.

Задача 2.

В наборе было 23 гири массой 1 кг, 2 кг, 3 кг, … 23 кг. Можно ли их разложить на две равные по массе части, если гирю в 21 кг потеряли?

Решение.

Масса всех гирь S = (1 + 23) + (2 + 22) + … + (11 + 13) + 12 – число четное.

Следовательно, (S – 21) на две равные по весу части не разложить, поскольку это число нечётное.

Ответ. 23 гири с данной массой на две равные части не разложить.

Задача 3.

Кузнечик прыгает по прямой в разные стороны: первый прыжок на 1 см, второй – на 2 см, третий – на 3 см и так далее. Может ли он после двадцать пятого прыжка вернуться в ту точку, с которой начал?

Решение.

Пусть кузнечик прыгает по числовой прямой в разные стороны и начинает из точки с координатой 0. После 25 прыжка он окажется в точке с нечетной координатой (среди чисел от 1 до 25 нечетных нечетное число). Так как 0 – число четное, то он не может вернуться в исходное положение.

Ответ. После 25 прыжка кузнечик не может вернуться в ту точку, с которой начал.

Задача 4.

В древней рукописи приведено описание города, расположенного на 8 островах. Острова соединены между собой и с материком мостами. На материк выходят 5 мостов; на 4 островах берут начало по 4 моста, на 3 островах берут начало по 3 моста и на один остров можно пройти только по одному мосту. Может ли быть такое расположение мостов?

Решение.

Найдем число концов у всех мостов:

5 + 4 · 4 + 3 · 3 + 1 = 31.

31 является числом нечетным.

Так как число концов у всех мостов должно быть четным, то такого расположения мостов быть не может.

Ответ. Не может.

Задача 5.

На столе стоит 6 стаканов. Из них 5 стаканов стоят пра­вильно, а один перевернут донышком вверх. Разре­шается переворачивать любые 2 стакана за один ход. Можно ли все стаканы поставить правильно за конечное число ходов?

Решение.

Для решения этой задачи попробуем сформулировать условие на языке чисел. Для этого событие «стакан стоит правильно» пронумеруем 1, а «стакан стоит не правильно» 0. Тогда вместо рисунка со стаканами возникнет последовательность из пяти единичек и одного нуля. Сумма всех чисел последовательности равна нечетному числу 5. При переворачивании стакана в нашей последовательности 0 будет меняться на 1 и наоборот – 1 на 0. Наша цель – получить ряд из одних 1. Их должно стать 6 и сумма должна стать также равной 6. Это число четное.

Но что происходит с суммой при переворачивании 2 стаканов одновременно? Либо две 1 заменяются 0, либо два 0 – единицами, либо одна 1 на 0 и один 0 на 1. А что же происходит с суммой? В первом и втором случаях она изменяется на 2, а в третьем – не меняется вообще. А это значит, что она никогда не станет четной и никогда не сможет стать равной 6, как, между прочим, ни 2 и не 4.

Ответ. Невозможно.

Задача 6.

Петя купил общую тетрадь объемом 96 листов и про­нумеровал все ее страницы по порядку числами от 1 до 192. Вася вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться число 2006?

Решение.

Обратим внимание на сумму номеров страниц на одном листе. Она нечетна, поскольку одной странице соответствует нечетное число, а второй странице листа чётное. Но листов 25. Тогда сумма всех номеров вырванных страниц нечетна. А что получил Вася? Следовательно, он не прав!

Ответ. Не могло.

Задача 7.

Каждая из 10 цифр написана на карточке. Таких комплектов изготовили 2. Получили 20 карточек, на каждой из которых написана цифра 0 или 1 или 2 ... или 9 и карточек с одинаковыми цифрами по 2. Доказать, что нельзя разложить эти карточки в один ряд так, чтобы между одинаковыми карточками с цифрой k лежало ровноk карточек. (k = 0, 1, 2, …, 9).

Решение.

Допустим, что разложить карточки указанным способом удалось. Тогда их легко пронумеровать по порядку числами от 1 до 20. Предположим, что каждая первая, встретившаяся в ряду, карточка с цифрой k имеет номер а k а последняя с той же цифрой k номер b k . Тогда b k а k = k + 1. Тогда

∑(b k а k) = ∑b k ∑а k = (b 0 – а 0) + (b 1 – а 1) + (b 2 а 2) + (b 3 а 3) + … + (b 9 а 9) = 1 + 2 + 3 + 4 + … + 10 = 55.

Но ∑b k + ∑а k = 1 + 2 + 3 + … + 20 = 210. (Сумма всех номеров карточек.).

Получили ∑b k ∑а k = 55 и ∑b k + ∑а k = 210. Сложив эти равенства, получаем 2∑b k = 265, что невозможно. (Во всех случаях под знаком ∑ понимается суммирование по k от 0 до 9.) Справа число четное, а слева – нечетное. Это противоречие доказывает, что наше допущение о возможности разложить карточки указанным способом ошибочно.

Ответ. Утверждение доказано.

Если вы хорошо усвоили материал данной статьи, то решение следующих задач у вас не должно вызывать особых затруднений. В случае затруднений, попробуйте найти среди решенных задачи родственного содержания.

  1. Вдоль забора растет 8 кустов малины. Число ягод на соседних кустах отличается на единицу. Может ли на всех кустах вместе быть 225 ягод?
  2. В Королевстве 1 001 город. Король приказал проло­жить между городами дороги так, чтобы из каждого города выходило 7 дорог. Смогут ли подданные спра­виться с приказом короля?

Желаю успехов!

Остались вопросы? Не знаете, как применять свойства чётности и нечётности чисел?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Похожие публикации