Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Опыт стимуляции растений электричеством и прибор для него. «электрогрядка» – устройство для стимуляции роста растений Электрическая стимуляция семян декоративных растений

26.04.2018

Электрические явления играют важную роль в жизни растений. Ещё более двухсот лет назад французский аббат, позже академик, П. Берталон заметил, что возле громоотвода растительность пышнее и сочнее, чем на некотором расстоянии от него. Позднее его соотечественник, учёный А. Грандо, в 1848 году выращивал два совершенно одинаковых растения, но одно находилось в естественных условиях, а другое было накрыто проволочной сеткой, ограждавшей его от внешнего электрического поля.

Второе растение развивалось медленно и выглядело хуже находящегося в естественном электрическом поле, благодаря чему Грандо сделал заключение, что для нормального роста и развития растениям необходим постоянный контакт с внешним электрическим полем.

Через сто с лишним лет немецкий учёный С. Леместр и его соотечественник О. Принсгейм провели серию опытов, в результате чего пришли к выводу, что искусственно созданное электростатическое поле способно компенсировать нехватку природного электричества, а если оно будет мощнее естественного, то рост растений даже ускоряется, помогая тем самым в выращивании сельскохозяйственных культур.

Почему же растения лучше растут в электрическом поле? Учёные Института физиологии растений им. К. А. Тимирязева АН СССР установили, что фотосинтез идёт тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение, то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестаёт поглощать углекислый газ. Электрическое поле влияет не только на взрослые растения, но и на семена. Если их на некоторое время поместить в искусственно созданное электрическое поле, то они быстрее дадут дружные всходы.

Понимая высокую эффективность использования электрической стимуляции растений в сельском и приусадебном хозяйстве, был разработан автономный, не требующий подзарядки долговременный источник низкопотенциального электричества для стимуляции роста растений .

Устройство для стимуляции роста растений получило название «ЭЛЕКТРОГРЯДКА», является продуктом высоких технологий (не имеет аналогов в мире) и представляет собой самовосстанавливающийся источник питания, преобразующий свободное электричество в электрический ток в результате применения электроположительных и электроотрицательных материалов, разделённых проницаемой мембраной и помещённых в газовую среду без применения электролитов в присутствии катализатора. Указанное низкопотенциальное электричество практически идентично электрическим процессам, происходящим под воздействием фотосинтеза в растениях и может использоваться для стимуляции их роста.

Устройство "ЭЛЕКТРОГРЯДКА" изобретено в Межрегиональном Объединении Ветеранов Войны Органов Государственной Безопасности "ЭФА-ВЫМПЕЛ", является его интеллектуальной собственностью и охраняется законом РФ. Автор изобретения В.Н. Почеевский.

«ЭЛЕКТРОГРЯДКА» позволяет существенно повысить урожай, ускорить рост растений, при этом они обильнее плодоносят, так как становится более активным сокодвижение.

«ЭЛЕКТРОГРЯДКА» помогает расти растениям как на открытом грунте и в теплицах, так и в закрытых помещениях. Радиус действия одного устройства «ЭЛЕКТРОГРЯДКА» зависит от длины проводов. При необходимости радиус действия устройства можно увеличить используя обычную токопроводящую проволоку.

В случае неблагоприятных погодных условий растения на грядке с устройством «ЭЛЕКТРОГРЯДКА» развиваются намного лучше, чем без него, что хорошо видно на приведённых ниже фотографиях, взятых из видеоролика «ЭЛЕКТРОГРЯДКА 2017 ».

Подробная информация об устройстве «ЭЛЕКТРОГРЯДКА» и принципе его работы представлена на сайте Межрегиональной народной программы «Возрождение родников России» .

Устройство «ЭЛЕКТРОГРЯДКА» является простым и удобным в применении. Подробная инструкция по установке устройства приведена на упаковке и не требует каких-либо специальных знаний или подготовки.


Если вы хотите всегда вовремя узнавать о новых публикациях на сайте, то подпишитесь на

"ЭЛЕКТРОГРЯДКА"

Устройство для стимуляции роста растений


Устройство для стимуляции роста растений "ЭЛЕКТРОГРЯДКА" представляет собой природный источник питания, преобразующий свободное электричество земли в электрический ток, образующейся в результате движения квантов в газовой среде.

В результате ионизации молекул газа осуществляется перенос низкопотенциального заряда от одного материала к другому и возникает ЭДС.

Указанное низкопотенциальное электричество практически идентично электрическим процессам происходящим в растениях и может использоваться для стимуляции их роста.

"ЭЛЕКТРОГРЯДКА" существенно повышает урожай и рост растений.
Уважаемые дачники сделайте сами на своём садовом участке устройство "ЭЛЕКТРОГРЯДКА"
и собирайте огромный урожай сельхоз-продуктов на радость себе и вашим соседям.

Устройство "ЭЛЕКТРОГРЯДКА" изобретено
в Межрегиональном Объединении Ветеранов Войны
Органов Государственной Безопасности "ЭФА-ВЫМПЕЛ"
является его интеллектуальной собственностью и охраняется законом РФ.

Автор изобретения:
Почеевский В.Н.

Узнав технологию изготовления и принцип работы "ЭЛЕКТРОГРЯДКИ",
Вы сможете сами создать это устройство по своему дизайну.


Радиус действия одного устройства зависит от длины проводов.

Вы за сезон при помощи устройства "ЭЛЕКТРОГРЯДКА"
сможете получить два урожая, так как ускоряется сокодвижение в растениях и они обильней плодоносят!

***
"ЭЛЕКТРОГРЯДКА" помогает расти растениям, на даче и в домашних условиях!
(розы из Голландии дольше не увядают)!

Принцип работы устройства "ЭЛЕКТРОГРЯДКА".

Принцип работы устройства "ЭЛЕКТРОГРЯДКА" очень прост.
Устройство "ЭЛЕКТРОГРЯДКА" создано по подобию большого дерева.
Алюминевая трубка заполненная (У-Ё…) составом - это крона дерева, где при взаимодействии с воздухом образуется отрицательный заряд (катод - 0,6 вольт).
В земле грядки протянута проволока в виде спирали, которая выполняет роль корня дерева. Земля грядки + анод.

Электрогрядка работает по принципу тепловой трубки и генератора постоянного импульсного тока, где частоту импульсов создаёт земля и воздух.
Проволока в земле + анод.
Проволока (растяжки) - катод.
При взаимодействии с влажностью воздуха (электролит) - происходят импульсные электрические разряды, которые притягивают воду с глубин земли, озонируют воздух и удобряют землю грядки.
Раним утром и вечером чувствуется запах озона, как после грозы.

Молнии же начали сверкать в атмосфере миллиарды лет назад, задолго до появления азотофиксирующих бактерий.
Так что они сыграли заметную роль в связывании атмосферного азота.
Например, только за последние два тысячелетия молнии перевели в удобрения 2 триллиона тонн азота - примерно 0,1% всего его количества в воздухе!

Проведите эксперимент. В дерево воткните гвоздь, а в землю медную проволоку на глубину 20 см., подсоедините вольтметр и Вы увидите, что стрелка вольтметра показывает 0,3 вольта.
Большие деревья генерируют до 0,5 вольт.
Корни деревьев как насосы с помощью осмоса поднимают из глубин земли воду и озонируют почву.

Немного истории.

Электрические явления играют важную роль в жизни растений. В ответ на внешние раздражения в них возникают очень слабые токи (биотоки). В связи с этим можно предположить, что внешнее электрическое поле может оказать заметное воздействие на темпы роста растительных организмов.

Еще в XIX веке ученые установили, что земной шар заряжен отрицательно по отношению к атмосфере. В начале XX столетия на расстоянии 100 Километров от поверхности земли была обнаружена положительно заряженная прослойка - ионосфера. В 1971 году космонавты увидели ее: она имеет вид светящейся прозрачной сферы. Таким образом, земная поверхность и ионосфера представляют собой два гигантских электрода, создающих электрическое поле, в котором постоянно находятся живые организмы.

Заряды между Землей и ионосферой переносятся аэроионами. Носители отрицательных зарядов устремляются к ионосфере, а положительные аэроионы движутся к земной поверхности, где вступают в контакт с растениями. Чем выше отрицательный заряд растения, тем больше оно поглощает положительных ионов

Можно предположить, что растения определенным образом реагируют на изменение электрического потенциала окружающей среды. Более двухсот лет назад французский аббат П Берталон заметил, что возле громоотвода растительность пышнее и сочнее, чем на некотором расстоянии от него. Позднее его соотечественник ученый Грандо выращивал два совершенно одинаковых растения, но одно находилось в естественных условиях, а другое было накрыто проволочной сеткой, ограждавшей его от внешнего электрического поля. Второе растение развивалось медленно и выглядело хуже находящегося в естественном электрическом поле. Грандо сделал заключение, что для нормального роста и развития растениям необходим постоянный контакт с внешним электрическим полем.

Однако до сих пор в действии электрического поля на растения много неясного. Давно замечено, что частые грозы благоприятствуют росту растений. Правда, это утверждение нуждается в тщательной детализации. Ведь грозовое лето отличается не только частотой молний, но и температурой, количеством осадков.

А это факторы, оказывающие на растения весьма сильное воздействие. Противоречивы данные, касающиеся темпов роста растений вблизи высоковольтных линий. Одни наблюдатели отмечают усиление роста под ними, другие - угнетение. Некоторые японские исследователи считают, что высоковольтные линии негативно влияют на экологическое равновесие. Более достоверным представляется тот факт, что у растений, произрастающих под высоковольтными линиями обнаруживаются различные аномалии роста. Так, под линией электропередач напряжением 500 киловольт у цветков гравилата увеличивается количество лепестков до 7-25 вместо привычных пяти. У девясила - растения из семейства сложноцветных - происходит срастание корзинок в крупное уродливое образование.

Не счесть опытов по влиянию электрического тока на растения. Еще И В. Мичурин проводил эксперименты, в которых гибридные сеянцы выращивались в больших ящиках с почвой, через которую пропускался постоянный электрический ток. Было установлено, что рост сеянцев при этом усиливается. В опытах, проведенных другими исследователями, были получены пестрые результаты. В некоторых случаях растения гибли, в других - давали небывалый урожай. Так, в одном из экспериментов вокруг делянки, где росла морковь, в почву вставили металлические электроды, через которые время от времени пропускали электрический ток. Урожай превзошел все ожидания - масса отдельных корней достигла пяти килограммов! Однако последующие опыты, к сожалению, дали иные результаты. По-видимому, исследователи упустили из виду какое-то условие, которое позволило в первом эксперименте с помощью электрического тока получить небывалый урожай.

Почему же растения лучше растут в электрическом поле? Ученые Института физиологии растений им. К. А. Тимирязева АН СССР установили, что фотосинтез идет тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение (500, 1000, 1500, 2500 вольт), то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестает поглощать углекислый газ.

Создается впечатление, что электризация растений активизирует процесс фотосинтеза. Действительно, у огурцов, помещенных в электрическом поле, фотосинтез протекал в два раза быстрее по сравнению с контрольными. В результате этого у них образовалось в четыре раза больше завязей, которые быстрее, чем у контрольных растений, превратились в зрелые плоды. Когда растениям овса сообщили электрический потенциал, равный 90 вольт, масса их семян увеличилась в конце опыта на 44 процента по сравнению с контролем.

Пропуская через растения электрический ток, можно регулировать не только фотосинтез, но и корневое питание; ведь нужные растению элементы поступают, как правило, в виде ионов. Американские исследователи установили, что каждый элемент усваивается растением при определенной силе тока.

Английские биологи добились существенной стимуляции роста растений табака, пропуская через них постоянный электрический ток силой всего в одну миллионную долю ампера. Разница между контрольными и опытными растениями становилась очевидной уже через 10 дней после начала эксперимента, а спустя 22 дня она была очень заметной. Выяснилось, что стимуляция роста возможна только в том случае, если к растению подключался отрицательный электрод. При перемене полярности электрический ток, напротив, несколько тормозил рост растений.

В 1984 году в журнале "Цветоводство" была опубликована статья об использовании электрического тока для стимуляции корнеобразования у черенков декоративных растений, особенно укореняющихся с трудом, например у черенков роз. С ними-то и были поставлены опыты в закрытом грунте. Черенки нескольких сортов роз высаживали в перлитовый песок. Дважды в день их поливали и не менее трех часов воздействовали электрическим током (15 В; до 60 мкА). При этом отрицательный электрод подсоединялся к растению, а положительный погружали в субстрат. За 45 дней прижилось 89 процентов черенков, причем у них появились хорошо развитые корни. В контроле (без электростимуляции) за 70 дней выход укорененных черенков составил 75 процентов, однако корни у них были развиты значительно слабее. Таким образом, электростимуляция сократила срок выращивания черенков в 1,7 раза, в 1,2 раза увеличила выход продукции с единицы площади. Как видим, стимуляция роста под воздействием электрического тока наблюдается в том случае, если к растению присоединяется отрицательный электрод. Это можно объяснить тем, что само растение обычно заряжено отрицательно. Подключение отрицательного электрода увеличивает разность потенциала между ним и атмосферой, а это, как уже отмечалось, положительно сказывается на фотосинтезе.

Благоприятное действие электрического тока на физиологическое состояние растений использовали американские исследователи для лечения поврежденной коры деревьев, раковых образований и т. д. Весной внутрь дерева вводили электроды, через которые пропускали электрический ток. Продолжительность обработки зависела от конкретной ситуации. После такого воздействия кора обновлялась.

Электрическое поле влияет не только на взрослые растения, но и на семена. Если их на некоторое время поместить в искусственно созданное электрическое поле, то они быстрее дадут и дружные всходы. В чем причина этого явления? Ученые предполагают, что внутри семян в результате воздействия электрическим полем разрывается часть химических связей, что приводит к возникновению осколков молекул, в том числе частиц с избыточной энергией - свободных радикалов. Чем больше активных частиц внутри семян, тем выше энергия их прорастания. По мнению ученых, подобные явления возникают при действии на семена и других излучений: рентгеновского, ультрафиолетового, ультразвукового, радиоактивного.

Возвратимся к результатам опыта Грандо. Растение, помещенное в металлическую клетку и тем самым изолированное от естественного электрического поля, плохо росло. Между тем в большинстве случаев собранные семена хранятся в железобетонных помещениях, которые, по существу, представляют собой точно такую же металлическую клетку. Не наносим ли мы тем самым ущерб семенам? И не потому ли хранившиеся таким образом семена столь активно реагируют на воздействие искусственного электрического поля?

Дальнейшее изучение влияния электрического тока на растения позволит еще более активно управлять их продуктивностью. Приведенные факты свидетельствуют о том, что в мире растений еще много непознанного.

ТЕЗИСЫ ИЗ РЕФЕРАТА ИЗОБРЕТЕНИЯ.

Электрическое поле влияет не только на взрослые растения, но и на семена. Если их на некоторое время поместить в искусственно созданное электрическое поле, то они быстрее дадут и дружные всходы. В чем причина этого явления? Ученые предполагают, что внутри семян в результате воздействия электрическим полем разрывается часть химических связей, что приводит к возникновению осколков молекул, в том числе частиц с избыточной энергией - свободных радикалов. Чем больше активных частиц внутри семян, тем выше энергия их прорастания.

Понимая высокую эффективность использования электрической стимуляции растений в сельском и приусадебном хозяйстве, был разработан автономный, не требующий подзарядки долговременный источник низкопотенциального электричества для стимуляции роста растений.

Устройство для стимуляции роста растений является продуктом высоких технологий (не имеющий аналогов в мире) и представляет собой самовосстанавливающийся источник питания, преобразующее свободное электричество в электрический ток, образующееся в результате применения электроположительных и электроотрицательных материалов, разделенных проницаемой мембраной и помещенных в газовую среду, без применения электролитов в присутствии нано катализатора. В результате ионизации молекул газа осуществляется перенос низко потенциального заряда от одного материала к другому и возникает ЭДС.

Указанное низкопотенциальное электричество практически идентично электрическим процессам, происходящие под воздействием фотосинтеза в растениях и может использоваться для стимуляции их роста. Формула полезной модели представляет собой применение двух и более электроположительных и электроотрицательных материалов без ограничения их размеров и способов их соединения, разделенных любой проницаемой мембраной и помещенных в газовую среду с применением или без применения катализатора.

"ЭЛЕКТРОГРЯДКУ" Вы сможете сделать сами.


**

На трёхметровом шесте прикреплена алюминевая трубка заполненная (У-Ё...) составом.
От трубки по шесту в землю протянут провод
который является анодом (+ 0,8 вольт).

Установка устройства "ЭЛЕКТРОГРЯДКА" из алюминиевой трубки.

1 - Прикрепить устройство к трёх метровому шесту.
2 - Прикрепить три растяжки из алюминиевой проволоки м-2,5мм.
3 - Прикрепить к проводу устройства медную проволоку м-2,5мм.
4 - Вскопать землю, диаметр грядки может быть до шести метров.
5 - В центр грядки установить шест с устройством.
6 - Уложить медную проволоку по спирали с шагом 20см.
конец проволоки углубить на 30см.
7- Сверху медную проволоку засыпать землёй на 20см.
8 - По периметру грядки вбить в землю три колышка, а в них три гвоздя.
9 - К гвоздям прикрепить растяжки из алюминиевой проволоки.

Испытания ЭЛЕКТРОГРЯДКИ в парнике для ленивых 2015 год.


Установите электрогрядку в парнике, Вы на две недели раньше начнёте собирать урожай - овощей будет в два раза больше, чем в предыдущие года!



"ЭЛЕКТРОГРЯДКА" из медной трубки.

Вы можете сами изготовить устройство
"ЭЛЕКТРОГРЯДКА" в домашних условиях.

Отправьте пожертвование

В сумме 1 000 рублей

В течении суток, после уведомительного письма на E-mail:[email protected]
Вы получите подробную техническую документацию по изготовлению ДВУХ моделей устройств "ЭЛЕКТРОГРЯДКА" в домашних условиях.

Сбербанк Онлайн

№ карты: 4276380026218433

VLADIMIR POCHEEVSKY

Перевод с карты или телефона на Яндекс кошелёк

номер кошелька 41001193789376

Перевод на Pay Pal

Перевод на Qiwi

Испытания "ЭЛЕКТРОГРЯДКИ" в холодное лето 2017 года.


Инструкция установки "ЭЛЕКТРОГРЯДКИ"



1 - Газовая трубка (генератор природных, импульсных токов земли).

2 - Штатив из медной проволоки - 30 см.

3 - Проволочная растяжка резонатор в виде пружины над землёй 5 метров.

4 - Проволочная растяжка резонатор в виде пружины в почве 3 метра.

Вытащите детали "Электрогрядки" из упаковки, растяните пружины по длине грядки.
Длинную пружину растяните на 5 метров, короткую на 3 метра.
Длину пружин можно увеличить обычной токопроводящей проволокой до бесконечности.

К штативу (2) присоедините пружину (4)- длиной 3 метра, как показано на рисунке,
штатив вставьте в почву и пружину углубите в землю на 5см.

К штативу (2) подсоедините газовую трубку (1). Трубку укрепите вертикально
с помощью колышка из ветки (железные штыри применять нельзя).

К газовой трубке (1) подсоедините пружину (3)- длиной 5 метров и укрепите на колышках из веток
с интервалом 2 метра. Пружина должна быть над землёй, высота не более 50 см.

После установки "Электрогрядки", к концам пружин подсоедините мультиметр
для проверки, показания должны быть не менее 300 мВ.

Устройство для стимуляции роста растений "ЭЛЕКТРОГРЯДКА" является продуктом высоких технологий (не имеющий аналогов в мире) и представляет собой самовосстанавливающийся источник питания, преобразующее свободное электричество в электрический ток, сокодвижение в растениях убыстряется, они менее подвергаются весенним заморозкам, быстрей растут и обильнее плодоносят!

Ваша материальная помощь идёт на поддержку
народной программы "ВОЗРОЖДЕНИЕ РОДНИКОВ РОССИИ"!

Если у Вас нет возможности оплатить технологию и материально помочь народной программе "ВОЗРОЖДЕНИЯ РОДНИКОВ РОССИИ" напишите нам на Email:[email protected] Мы рассмотрим Ваше письмо и вышлем Вам технологию даром!

Межрегиональная программа "ВОЗРОЖДЕНИЕ РОДНИКОВ РОССИИ" - является НАРОДНОЙ !
Мы трудимся только на частные пожертвования граждан и не принимаем финансирование от коммерческих государственных и политических организаций.

РУКОВОДИТЕЛЬ НАРОДНОЙ ПРОГРАММЫ

"ВОЗРОЖДЕНИЕ РОДНИКОВ РОССИИ"

Владимир Николаевич Почеевский Тел: 8-965-289-96-76

Электризация почвы и урожай

В целях повышения продуктивности сельскохозяйственных растений человечество с давних пор обращается к почве. То, что электричество может повысить плодородие верхнего пахотного слоя земли, то есть усилить его способность формировать большой урожай, опытами учёных и практиков уже доказано давно. Но как это сделать лучше, как увязать электризацию почвы с существующими технологиями её обработки? Вот те проблемы, которые не решены до конца и сейчас. При этом нельзя забывать, что почва - объект биологический. И при неумелом вмешательстве в этот сложившийся организм, особенно столь мощным средством, каким является электричество, можно нанести ему непоправимый ущерб.

При электризации почвы видят, прежде всего, способ влияния на корневую систему растений. К настоящему времени накоплено много данных, показывающих, что слабый электрический ток, пропущенный через почву, стимулирует в растениях ростовые процессы. Но результат ли это прямого действия электричества на корневую систему, и через неё и на все растение, или итог физико-химических изменений в почве? Определённый шаг к пониманию проблемы сделали в свое время ленинградские учёные.

Проведенные ими опыты были весьма изощрёнными, ведь предстояло выяснить глубоко спрятанную истину. Брали небольшие полиэтиленовые трубки-камеры с отверстиями, в которые высаживали проростки кукурузы. Трубки заполняли питательным раствором с полным набором необходимых проросткам химических элементов. И через него с помощью инертных в химическом отношении платиновых электродов пропускали постоянный электрический ток величиной 5-7 мкА/кв. см. Объём раствора в камерах поддерживали на одном уровне, добавляя дистиллированную воду. Воздух, а он крайне нужен корням, систематически подавали (в виде пузырьков) из специальной газокамеры. За составом питательного раствора непрерывно следили датчики того или иного элемента - ионоселективные электроды. И по зарегистрированным изменениям делали вывод, что и в каком количестве поглощено корнями. Все другие каналы утечки химических элементов были перекрыты. Параллельно работал контрольный вариант, в котором всё было абсолютно таким же, за исключением одного - через раствор электрический ток не пропускали. И что же?

Не прошло и 3 часов с начала эксперимента, а разница между контрольным и электрическим вариантами уже выявилась. В последнем элементы питания поглощались корнями активнее. Но, возможно, дело не в корнях, а в ионах, которые под действием внешнего тока стали быстрее передвигаться в растворе? Для ответа на этот вопрос в одном из опытов предусмотрели измерение биопотенциалов проростков и в определённое время включали в «работу» гормоны роста. Почему? Да потому, что они без всякой дополнительной электростимуляции изменяют активность поглощения корнями ионов и биоэлектрическую характеристику растений.

По окончанию эксперимента авторами были сделаны следующие выводы: «Пропускание слабого электрического тока через питательный раствор, в который погружена корневая система проростков кукурузы, оказывает стимулирующее действие на поглощение растениями ионов калия и нитратного азота из питательного раствора». Значит, всё-таки электричество стимулирует деятельность корневой системы? Но как, через какие механизмы? Для полной убедительности в корневом эффекте электричества поставили ещё один опыт, в котором также был питательный раствор, были корни, теперь уже огурцов, измеряли также биопотенциалы. И в этом эксперименте работа корневой системы при электростимуляции улучшалась. Однако до разгадки путей её действия ещё далеко, хотя уже познано, что электрический ток оказывает на растение как прямое, так и косвенное воздействие, степень влияния которых определяется целым рядом факторов.

Тем временем исследования эффективности электризации почвы расширялись и углублялись. Сегодня их, как правило, проводят в теплицах или в условиях вегетационных опытов. Это и понятно, поскольку только так можно уйти от ошибок, которые невольно допускаются тогда, когда эксперименты ставились в полевых условиях, в которых невозможно наладить контроль за каждым отдельным фактором.

Весьма обстоятельные опыты с электризацией почвы в своё время в Ленинграде провёл научный работник В. А. Шустов. В слабо подзолистую суглинистую почву он добавил 30% перегноя и 10% песка и через эту массу перпендикулярно корневой системе между двумя стальными или угольными электродами (лучше себя показали последние) пропускал ток промышленной частоты плотностью 0,5 мА/кв. см. Урожай редиса вырос на 40-50%. А вот постоянный ток такой же плотности снизил сбор этих корнеплодов по сравнению с контролем. И лишь понижение его плотности до 0,01-0,13 мА/кв. см вызвало повышение урожая до уровня, полученного при использовании переменного тока. В чём тут причина?

Используя меченый фосфор, установили, что переменный ток выше указанных параметров благотворно влияет на поглощение растениями этого важного электрического элемента. Проявилось также и положительное действие постоянного тока. При его плотности 0,01 мА/кв. см получен урожай примерно равный тому, что был получен при применении переменного тока плотностью 0,5 мА/ кв. см. Кстати, из четырех испытываемых частот переменного тока (25, 50, 100 и 200 Гц) лучшей оказалась частота в 50 Гц. Если же растения прикрывали заземлёнными экранирующими сетками, то урожай овощных культур значительно снижался.

В Армянской НИИ механизации и электрификации сельского хозяйства применяли электричество для стимуляции растений табака. Изучали широкий спектр плотностей тока, пропускаемого в поперечном сечении корнеобитаемого слоя. У переменного тока он был 0,1; 0,5; 1,0; 1,6; 2,0; 2,5; 3,2 и 4,0 а/кв. м, у постоянного - 0,005; 0,01; 0,03; 0,05; 0,075; 0,1; 0,125 и 0,15 а/кв. м. В качестве питательного субстрата использовали смесь, состоящую на 50% из чернозёма, на 25% из перегноя и на 25% из песка. Наиболее оптимальными оказались плотности тока 2,5 а/кв. м для переменного и 0,1 а/кв. м для постоянного при непрерывной подаче электричества в течение полутора месяцев. При этом выход сухой массы табака в первом случае превышал контроль на 20, а во втором - на 36%.

Или вот томаты. Экспериментаторы создавали в их корнеобитаемой зоне постоянное электрическое поле. Растения развивались намного быстрее контрольных, особенно в фазу бутонизации. У них была больше площадь листовой поверхности, повысилась активность фермента пероксидазы, усиливалось дыхание. В результате прибавка урожая составила 52%, и произошло это в основном за счёт увеличения размеров плодов и их количества на одном растении.

Постоянный ток, пропускаемый через почву, благотворно влияет и на плодовые деревья. Это подметил ещё И. В. Мичурин и успешно применял его ближайший помощник И. С. Горшков, который в своей книге «Статьи по плодоводству» (Москва, Изд. Сельск. литер., 1958 г.) посвятил данному вопросу целую главу. В указанном случае плодовые деревья быстрее проходят детский (учёные говорят «ювенильный») этап развития, повышается их холодостойкость и устойчивость к другим неблагоприятным факторам среды, в итоге увеличивается урожайность. Чтобы не быть голословным, приведу конкретный пример. Когда через почву, на которой росли молодые хвойные и лиственные деревья, непрерывно в течение светлого периода суток пропускали постоянный ток, в их жизни происходил целый ряд примечательных явлений. В июне-июле опытные деревья отличались более интенсивным фотосинтезом, что явилось результатом стимулирования электричеством роста биологической активности почвы, повышения скорости движения почвенных ионов, лучшего поглощения их корневыми системами растений. Более того, ток, протекающий в почве, создавал большую разность потенциалов между растениями и атмосферой. А это, как уже говорилось, фактор сам по себе благоприятный для деревьев, особенно молодых. В следующем опыте, проведённом под плёночным укрытием, при непрерывном пропускании постоянного тока фитомасса однолетних сеянцев сосны и лиственницы увеличилась на 40-42%. Если бы такой темп прироста сохранить в течение нескольких лет, то нетрудно представить, какой огромной выгодой бы это обернулось.

Интересный опыт по влиянию электрического поля между растениями и атмосферой провели учёные Института физиологии растений АН СССР. Они установили, что фотосинтез идёт тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение (500, 1000, 1500, 2500 В), то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестает поглощать углекислый газ.

Нужно отметить, что опытов по электризации почвы проведено очень много, как у нас, так и за рубежом. Установлено, что это воздействие изменяет передвижение различных видов почвенной влаги, способствует размножению ряда трудноусвояемых для растений веществ, провоцирует самые разнообразные химические реакции, в свою очередь изменяющие реакцию почвенного раствора. При электровоздействии на почву слабыми токами в ней лучше развиваются микроорганизмы. Определены и параметры электрического тока, оптимальные для разнообразных почв: от 0,02 до 0,6 мА/кв. см для постоянного тока и от 0,25 до 0,5 мА/кв. см для переменного тока. Однако на практике ток указанных параметров даже на аналогичных почвах может и не дать прибавки урожая. Это объясняется тем многообразием факторов, которые возникают при взаимодействии электричества с почвой и возделываемыми на ней растениями. В почве, принадлежащей к одной и той же классификационной категории, в каждом конкретном случае могут быть совершенно различные концентрации водорода, кальция, калия, фосфора, других элементов, могут быть несхожие условия аэрации, а, следовательно, и прохождение собственных окислительно-восстановительных процессов и т.д. Наконец, не надо забывать о постоянно изменяющихся параметрах атмосферного электричества и земного магнетизма. Многое также зависит от применяемых электродов и способ электровоздействия (постоянное, кратковременное и т.д.). Короче говоря, надо в каждом конкретном случае пробовать и подбирать, пробовать и подбирать...

Вследствие этих и ряда других причин электризация почвы, хотя и способствует повышению урожайности сельскохозяйственных растений, и нередко довольно значительному, но широкого практического применения пока ещё не приобрела. Понимая это, учёные ищут новые подходы к данной проблеме. Так, предложена обработка почвы электрическим разрядом для фиксации в ней азота - одного из главных «блюд» для растений. Для этого в почве и в атмосфере создают высоковольтный маломощный непрерывный дуговой разряд переменного тока. И там, где он «работает», часть атмосферного азота переходит в нитратные формы, усвояемые растениями. Однако происходит это, конечно, на небольшом участке поля и достаточно затратно.

Более эффективен другой способ увеличения количества усвояемых форм азота в почве. Он заключается в применение кистевого электрического разряда, создаваемого непосредственно в пахотном слое. Кистевой разряд - это одна из форм газового разряда, возникающая при атмосферном давлении на металлическом остриё, к которому подведён высокий потенциал. Величина потенциала зависит от положения другого электрода и от радиуса кривизны острия. Но в любом случае он должен измеряться десятком киловольт. Тогда на кончике острия возникает кистеобразный пучок перемежающихся и быстро смешивающихся электрических искр. Такой разряд вызывает образование в почве большого количества каналов, в которые проходит значительное количество энергии и, как показали лабораторные и полевые эксперименты, способствует увеличению в почве усвояемых растениями форм азота и, как следствие, повышению урожая.

Ещё более эффективно использование при обработке почвы электрогидравлического эффекта, заключающегося в создании электрического разряда (электрической молнии) в воде. Если поместить в сосуд с водой порцию почвы и произвести в этом сосуде электрический разряд, то произойдёт дробление частиц почвы с высвобождением большого количества необходимых для растений элементов и связывание атмосферного азота. Такое воздействие электричества на свойства почвы и на воду очень благотворно сказывается на росте растений и их урожайности. Учитывая большую перспективу этого способа электризации почвы, я попробую рассказать о нем более подробно в отдельной статье.

Весьма любопытен другой способ электризации почвы - без внешнего источника тока. Это направление развивает кировоградский исследователь И. П. Иванько. Он рассматривает почвенную влагу как своеобразный электролит, находящийся под воздействием электромагнитного поля Земли. На границе раздела металл-электролит, в данном случае металлопочвенный раствор, возникает гальвано-электрический эффект. В частности, при нахождении в почве стального провода на его поверхности в результате окислительно-восстановительных реакций образуются катодные и анодные зоны, происходит постепенное растворение металла. В итоге на межфазных границах возникает разность потенциалов, достигающая 40-50 мВ. Образуется она и между двумя проводами, уложенными в почве. Если провода находятся, например, на расстоянии 4 м, то разность потенциалов составляет 20-40 мВ, но сильно изменяется в зависимости от влажности и температуры почвы, её механического состава, количества удобрений и других факторов.

Электродвижущую силу между двумя проводами в почве автор назвал «агро-ЭДС», ему удалось не только её измерить, но и объяснить общие закономерности, по которым она образуется. Характерно, что в определённые периоды, как правило, при смене фаз Луны и изменении погоды, стрелка гальванометра, при помощи которого замеряют возникающий между проводами ток, резко меняет положение - сказывается сопровождающие подобные явления перемены в состоянии электромагнитного поля Земли, передающиеся почвенному «электролиту».

Исходя из этих представлений, автор предложил создавать электролизуемые агрономические поля. Для чего специальный тракторный агрегат щелевателем-проводоукладчиком распределяет сматываемый с барабана стальной провод диаметром 2,5 мм по дну щели на глубину 37 см. Пройдя гон, тракторист включает гидросистему на подъём, рабочий орган выглубляется из почвы, а провод обрубается на высоте 25 см от поверхности почвы. Через 12 м по ширине поля операция повторяется. Заметим, что размещенная таким образом проволока не мешает проведению обычных агротехнических работ. Ну, а если потребуется, то стальные проводки легко удалить из почвы при помощи узла размотки и намотки мерной проволоки.

Экспериментами установлено, что при таком способе на электродах наводится «агро-ЭДС» величиной 23-35 мВ. Поскольку электроды имеют разную полярность, между ними через влажную почву возникает замкнутая электрическая цепь, по которой течёт постоянный ток плотностью от 4 до 6 мкА/кв. см анода. Проходя через почвенный раствор как через электролит, этот ток поддерживает в плодородном слое процессы электрофореза и электролиза, благодаря чему необходимые растениям химические вещества почвы переходят из трудноусвояемых в легкоусвояемые формы. Кроме того, под воздействием электрического тока все растительные остатки, семена сорняков, отмершие животные организмы быстрее гумифицируются, что ведёт к росту плодородия почвы.

Как видно, в данном варианте электризация почвы возникает без искусственного источника энергии, лишь в результате действия электромагнитных сил нашей планеты.

Между тем за счёт этой «даровой» энергии в экспериментах получена весьма высокая прибавка урожая зерна - до 7 ц/га. Учитывая простоту, доступность и неплохую эффективность предложенной технологии электризации, садоводы-любители, заинтересовавшиеся этой технологией, могут прочесть о ней более подробно в статье И. П. Иванько «Использование энергии геомагнитных полей», опубликованной в журнале «Механизация и электрификация сельского хозяйства» № 7 за 1985 г. При внедрении указанной технологии автор советует располагать проволоки в направлении с севера на юг, а возделываемые над ними сельскохозяйственные растения с запада на восток.

Данной статьей я попытался заинтересовать садоводов-любителей в применении в процессе возделывания различных растений помимо известных технологий ухода за почвой электротехнологии. Относительная простота большинства способов электризации почвы, доступная для лиц, получивших знания по физике даже в объёме программы средней школы, делает возможным их применение и проверку практически на каждом садовом участке при выращивании овощей, плодовых и ягодных, цветочно-декоративных, лекарственных и других растений. Я тоже экспериментировал с электризацией почвы постоянным током в 60-е годы прошлого века при выращивании сеянцев и саженцев плодовых и ягодных культур. В большинстве опытов наблюдалась стимуляция роста, причем, иногда очень значительная, особенно при выращивании сеянцев вишни и сливы. Так что, уважаемые садоводы-любители, попробуйте проверить какой-нибудь способ электризации почвы в предстоящем сезоне на какой-либо культуре. А вдруг у вас всё получится хорошо, и всё это может оказаться одной из золотых жил?

В. Н. Шаламов


Электрические явления играют важную роль в жизни растений. В ответ на внешние раздражения в них возникают очень слабые токи (биотоки). В связи с этим можно предположить, что внешнее электрическое поле может оказать заметное воздействие на темпы роста растительных организмов.
Еще в XIX веке ученые установили, что земной шар заряжен отрицательно по отношению к атмосфере. В начале XX столетия на расстоянии 100 Километров от поверхности земли была обнаружена положительно заряженная прослойка - ионосфера. В 1971 году космонавты увидели ее: она имеет вид светящейся прозрачной сферы. Таким образом, земная поверхность и ионосфера представляют" собой два гигантских электрода, создающих электрическое поле, в котором постоянно находятся живые организмы.
Заряды между Землей и ионосферой переносятся аэроионами. Носители отрицательных зарядов устремляются к ионосфере, а положительные аэроионы движутся к земной поверхности, где вступают в контакт с растениями. Чем выше отрицательный заряд растения, тем больше оно поглощает положительных ионов.
Можно предположить, что растения определенным образом реагируют на, изменение электрического потенциала окружающей среды. Более двухсот лет назад французский аббат П. Берталон заметил, что возле громоотвода растительность пышнее и сочнее, чем на некотором расстоянии от него. Позднее его соотечественник ученый Гран- до выращивал два совершенно одинаковых растения, но одно находилось в естественных условиях, а другое было накрыто проволочной сеткой, ограждавшей его от внешнего электрического поля. Второе растение развивалось медленно и выглядело хуже находящегося в естественном электрическом поле. Г рандо сделал заключение, что для нормального роста и развития растениям необходим постоянный контакт с внешним электрическим полем.
Однако до сих пор в действии электрического поля на растения много неясного. Давно замечено, что частые грозы благоприятствуют росту растений. Правда, это утверждение нуждается в тщательной детализации. Ведь грозовое лето отличается не только частотой молний, но и температурой, количеством осадков.
А это факторы, оказывающие на растения весьма сильное воздействие.
Противоречивы данные, касающиеся темпов роста растений вблизи высоковольтных линий. Одни наблюдатели отмечают усиление роста под ними, другие - угнетение. Некоторые японские исследователи считают, что высоковольтные линии негативно влияют на экологическое равновесие.
Более достоверным представляется тот факт, что у растении, произрастающих под высоковольтными линиями обнаруживаются различные аномалии роста. Так, под линией электропередач напряжением 500 киловольт у цветков гравилата увеличивается количество лепестков до 7-25 вместо привычных пяти. У девясила - растения из семейства сложноцветных - происходит срастание корзинок в крупное уродливое образование.
Не счесть опытов по влиянию электрического тока на растения. Еще И. В. Мичурин проводил эксперименты, в которых гибридные сеянцы выращивались в больших ящи* ках с почвой, через которую пропускался постоянный
электрический ток. Было установлено, что рост сеянцев при этом усиливается. В опытах, проведенных другими исследователями, были получены пестрые результаты. В некоторых случаях растения гибли, в других - давали небывалый урожай. Так, в одном из экспериментов вокруг делянки, где росла морковь, в почву вставили металлические электроды, через которые время от времени пропускали электрический ток. Урожай превзошел все ожидания - масса отдельных корней достигла пяти килограммов! Однако последующие опыты, к сожалению, дали иные результаты. По-видимому, исследователи упустили из виду какое-то условие, которое позволило в первом эксперименте с помощью электрического тока получить небывалый урожай.
Почему же растения лучше растут в электрическом поле? Ученые Института физиологии растений им. К- А. Тимирязева АН СССР установили, что фотосинтез идет тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение (500, 1000, 1500,
2500 вольт), то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестает поглощать углекислый газ.
Создается впечатление, что электризация растений активизирует процесс фотосинтеза. Действительно, у огурцов, помещенных в электрическом поле, фотосинтез протекал в два раза быстрее по сравнению с контрольными. В результате этого у них образовалось в четыре раза больше завязей, которые быстрее, чем у контрольных растений, превратились в зрелые плоды. Когда растениям овса сообщили электрический потенциал, равный 90 вольт, масса их семян увеличилась в конце опыта на 44 процента по сравнению с контролем.
Пропуская через растения электрический ток, можно регулировать не только фотосинтез, но и корневое питание; ведь нужные растению элементы поступают, как правило, в виде ионов. Американские исследователи установили, что каждый элемент усваивается растением при определенной силе тока.
Английские биологи добились существенной стимуляции роста растений табака, пропуская через них постоянный электрический ток силой всего в одну миллионную долю ампера. Разница между контрольными и опытными растениями становилась очевидной уже через 10 дней после начала эксперимента, а спустя 22 дня она была очень заметной. Выяснилось, что стимуляция роста возможна только в том случае, если к растению подключался отрицательный электрод. При перемене полярности электрический ток,

напротив, несколько тормозил рост растений.
В 1984 году в журнале «Цветоводство» была опубликована статья об использовании электрического тока для стимуляции корнеобразо- вания у черенков декоративных растений, особенно укореняющихся с трудом, например у черенков роз. С ними-то и были поставлены опыты в закрытом грунте. Черенки нескольких сортов роз высаживали в перлитовый песок. Дважды в день их поливали и не менее трех часов воздействовали электрическим током (15 В; до 60 мкА). При этом отрицательный электрод подсоединялся к растению, а положительный погружали в субстрат. За 45 дней прижилось 89 процентов черенков, причем у них появились хорошо развитые кор
ни. В контроле (без электростимуляции) за 70 дней выход укорененных черенков составил 75 процентов, однако корни у них были развиты значительно слабее. Таким образом, электростимуляция сократила срок выращивания черенков в 1,7 раза, в 1,2 раза увеличила выход продукции с единицы площади.
Как видим, стимуляция роста под воздействием электрического тока наблюдается в том случае, если к растению присоединяется отрицательный электрод. Это можно объяснить тем, что само растение обычно заряжено отрицательно. Подключение отрицательного электрода увеличивает разность потенциала между ним и атмосферой, а это, как уже отмечалось, положительно сказывается на фотосинтезе.

Благоприятное действие электрического тока на физиологическое состояние растений использовали американские исследователи для лечения поврежденной коры деревьев, раковых образований и т. д. Весной внутрь дерева вводили электроды, через которые пропускали элек- рический ток. Продолжительность обработки зависела от конкретной ситуации. После такого воздействия кора обновлялась.
Электрическое поле влияет не только на взрослые растения, но и на семена. Если их на некоторое время поместить в искусственно созданное электрическое поле, то они быстрее дадут и дружные всходы. В чем причина этого явления? Ученые предполагают, что внутри семян в результате воздействия электрическим полем разрывается часть химических связей, что приводит к возникновению осколков молекул, в том числе частиц с избыточной энергией - свободных радикалов. Чем больше активных частиц внутри семян, тем выше энергия их прорастания. По мнению ученых, подобные явления возникают при действии на семена и других излучений: рентгеновского, ультрафиолетового, ультразвукового, радиоактивного.
Возвратимся к результатам опыта Грандо. Растение, помещенное в металлическую клетку и тем самым изолированное от естественного электрического поля, плохо росло. Между тем в большинстве случаев собранные семена хранятся в железобетонных помещениях, которые, по существу, представляют собой точно такую же металлическую клетку. Не наносим ли мы тем самым ущерб семенам? И не потому ли хранившиеся таким образом семена столь активно реагируют на воздействие искусственного электрического поля?
В Физико-техническом институте АН УзССР разработана установка для предпосевной обработки семян хлопчатника. Семена движутся под электродами, между которыми возникает так называемый «коронный» разряд. Производительность установки - 50 килограммов семян в час. Обработка позволяет получить прибавку урожая в пять центнеров с гектара. Облучение повышает всхожесть семян более чем на 20 процентов, коробочки созревают на неделю раньше обычного, а волокно становится прочнее и длиннее. Растения лучше противостоят различным заболеваниям, особенно такому опасному, как вилт.
В настоящее время электрическая обработка семян различных культур осуществляется в хозяйствах Челябинской, Новосибирской и Курганской областей, Башкирской и Чувашской АССР, Краснодарского края.
Дальнейшее изучение влияния электрического тока на растения позволит еще более активно управлять их продуктивностью. Приведенные факты свидетельствуют о том, что в мире растений еще много непознанного.

Глава 1. СОВРЕМЕННОЕ СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ ИССЛЕДОВАНИЯ

1.1. Состояние и перспективы развития виноградарства.

1.2. Технология производства корнесобственного посадочного материала винограда.

1.3. Способы стимуляции корне- и побегообразования черенков винограда.

1.4. Стимулирующее действие на растительные объекты электрофизических факторов.

1.5. Обоснование способа стимуляции черенков винограда электрическим током.

1.6. Состояние вопроса конструктивных разработок устройств для электростимуляции растительного материала.

1.7. Выводы по обзору литературных источников. Задачи исследования.

Глава 2. ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ

2.1. Механизм стимулирующего действия электрического тока на растительные объекты.

2.2. Схема замещения черенка винограда.

2.3. Исследование энергетических характеристик электрической цепи обработки черенков винограда.

2.4. Теоретическое обоснование оптимального соотношения между объёмом токоподводящей жидкости и суммарного объёма обрабатываемых черенков.

Глава 3. МЕТОДИКА И ТЕХНИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

3.1. Исследование черенка винограда как проводника электрического тока.

3.2. Методика проведения экспериментов по исследованию воздействия электрического тока на корнеобра-зование черенков винограда.

3.3 Методика проведения эксперимента по выявлению электрических параметров электрической цепи обработки.

3.4. Методика проведения учётов и наблюдений за побеге- и корнеобразованием черенков винограда.

Глава 4. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РЕЖИМОВ И ОБОСНОВАНИЕ ПАРАМЕТРОВ УСТАНОВКИ ДЛЯ ЭЛЕКТРОСТИМУЛЯЦИИ ПОСАДОЧНОГО МАТЕРИАЛА ВИНОГРАДА

4.1. Исследование электрофизических свойств виноградной лозы.

4.2. Стимуляция корнеобразования черенков винограда.

4.3. Исследование и обоснование параметров установки для электростимуляции корнеобразования черенков винограда.

4.4. Результаты исследования корнеобразования черенков винограда.

Глава 5. РАЗРАБОТКА И ИСПЫТАНИЯ УСТАНОВКИ ДЛЯ ЭЛЕКТРОСТИМУЛЯЦИИ ПОСАДОЧНОГО МАТЕРИАЛА ВИНОГРАДА, ТЕХНОЛО

ГИЧЕСКАЯ, АГРОТЕХНИЧЕСКАЯ И ЭКОНОМИЧЕСКАЯ ОЦЕНКИ РЕЗУЛЬТАТОВ ЕЁ ИСПОЛЬЗОВАНИЯ В ХОЗЯЙСТВАХ

5.1. Конструктивная разработка установки.

5.2. Результаты производственных испытаний установки для электростимуляции корнеобразования черенков винограда.

5.3. Агротехническая оценка.

5.4. Экономическая эффективность использования установки для электростимуляции корнеобразования черенков винограда.

Рекомендованный список диссертаций

  • Биологические аспекты ускоренного размножения винограда в условиях Дагестана 2005 год, кандидат биологических наук Баламирзоева, Зульфия Мирзебалаевна

  • Система производства посадочного материала винограда высших категорий качества 2006 год, доктор сельскохозяйственных наук Кравченко, Леонид Васильевич

  • Роль микромицетов в этиологии сосудистого некроза саженцев винограда в Анапо-Таманской зоне Краснодарского края 2011 год, кандидат биологических наук Лукьянова, Анна Александровна

  • Приемы формирования и обрезки кустов винограда на богарных и орошаемых маточниках привойных лоз южной степи УССР 1984 год, кандидат сельскохозяйственных наук Микитенко, Сергей Васильевич

  • Научные основы адаптивного виноградарства Чеченской Республики 2001 год, доктор сельскохозяйственных наук Зармаев, Али Алхазурович

Введение диссертации (часть автореферата) на тему «Стимуляция корнеобразования черенков винограда электрическим током»

В настоящее время выращиванием товарного винограда в Российской Федерации занимаются 195 специализированных виноградарских хозяйств, в 97 из которых имеются заводы по первичной переработке винограда.

Разнообразие почвенно-климатических условий выращивания винограда в России позволяет производить широкую гамму сухих, десертных, крепких и игристых вин, высококачественные коньяки.

Кроме того, виноделие следует рассматривать не только как средство производства алкогольной продукции, но и как основной источник финансирования развития виноградарства России, дающий потребительскому рынку столовые сорта винограда, виноградные соки, детское питание, сухие вина и другие экологически чистые продукты, жизненно необходимые населению страны (достаточно вспомнить Чернобыль и поставку туда красных столовых вин - единственного продукта, выводящего из человеческого организма радиоактивные элементы).

Использование винограда в свежем виде в эти годы не превышало 13 тыс. т, то есть его потребление на душу населения равнялось 0,1 кг вместо 7 - 12 кг по медицинским нормам.

В 1996 году было недобрано более 100 тыс. т винограда из-за гибели насаждении от вредителей и болезней, недополучено около 8 млн. дал виноградного вина на общую сумму 560-600 млрд. руб. (на приобретение же средств защиты урожая требовалось всего 25-30 млрд. руб.). Виноградарям нет никакого смысла расширять насаждения ценных технических сортов, так как при существующем ценообразовании и налогах все это просто убыточно. У виноделов потерян смысл в приготовлении высокоценных вин, так как у населения нет свободных денег на покупку натуральных виноградных вин, а бесчисленные коммерческие ларьки завалены десятками сортов дешёвой, неизвестно кем и как приготовленной водки.

Стабилизация отрасли в настоящее время зависит решения проблем на федеральном уровне: нельзя допустить дальнейшего ее разрушения, необходимо укрепить производственную базу и улучшить финансовое стояние предприятий. Поэтому уже с 1997 года особое внимание уделяется мерам, направленным на сохранение существующих насаждений и их продуктивности за счёт проведения всех работ по уходу за виноградниками на высоком агротехническом уровне. Одновременно в хозяйствах постоянно проводятся замена низкорентабельных, потерявших хозяйственную ценность насаждений, сортообновление и улучшение их структуры.

Перспективы дальнейшего развития виноградарства нашей страны требуют резкого увеличения производства посадочного материала, как основного фактора, задерживающего освоение новых площадей под виноградники. Несмотря на применение ряда биологических и агротехнических мероприятий по увеличению выхода первосортных корнесобственных саженцев, до настоящего времени их выход в некоторых хозяйствах крайне низок, что сдерживает расширение площадей виноградников.

Выращивание корнесобственных саженцев является сложным биологическим процессом, зависящем как от внутренних, так и внешних факторов произрастания растения.

Современное состояние науки даёт возможность управлять этими факторами посредством разного рода стимуляторов, в том числе и электрических, с помощью которых оказывается возможным активно вмешиваться в жизненный процесс растения и ориентировать его в нужном направлении.

Исследованиями советских и зарубежных учёных, среди которых следует отметить работы В.И. Мичурина, A.M. Басова, И.И. Гунара, Б.Р. Ла-заренко, И.Ф. Бородина установлено, что электрофизические методы и способы воздействия на биологические объекты, в том числе и на растительные организмы, в ряде случаев дают не только количественные, но и качественные положительные результаты, не достижимые с помощью других методов.

Несмотря на большие перспективы применения электрофизических методов управления жизненными процессами растительных организмов, внедрение этих способов в растениеводстве задерживается, так как до сего времени ещё недостаточно изучены механизм стимуляции и вопросы расчёта и конструирования соответствующих электроустановок.

В связи с вышесказанным разрабатываемая тема является весьма актуальной для виноградного питомниководетва.

Научная новизна проведённой работы заключается в следующем: выявлена зависимость плотности тока, протекающего по черенку винограда как объекту электрообработки, от напряжённости электрического поля и экспозиции. Установлены режимы электрообработки (напряжённость электрического поля, экспозиция), соответствующие минимальным затратам энергии. Обоснованы параметры электродных систем и источника питания для электростимуляции черенков винограда.

Основные положения, которые выносятся на защиту:

1. Обработка виноградных черенков электрическим током стимулирует корнеобразование, за счёт чего на 12 % увеличивается выход из школки стандартных саженцев.

2. Электростимуляцию виноградных черенков следует проводить переменным током промышленной частоты (50 гц) с подводом электроэнергии к ним через токоподводяшую жидкость. 8

3. Максимальный коэффициент полезного действия при электростимуляции виноградных черенков с подводом электроэнергии к ним через токоподводящую жидкость достигается при соотношении объёма жидкости к суммарному объёму обрабатываемых черенков как 1:2; при этом соотношение между удельными сопротивлениями токоподводящей жидкости и обрабатываемых черенков должно находится в пределе от 2 до 3.

4. Электростимуляция виноградных черенков должна производится при напряжённости электрического поля 14 В/м и экспозиции обработки 24 часа.

Похожие диссертационные работы по специальности «Электротехнологии и электрооборудование в сельском хозяйстве», 05.20.02 шифр ВАК

  • 1999 год, кандидат сельскохозяйственных наук Козаченко, Дмитрий Михайлович

  • Совершенствование приемов активизации корнеобразования у подвоев и сортов винограда при производстве саженцев 2009 год, кандидат сельскохозяйственных наук Никольский, Максим Алексеевич

  • 2007 год, кандидат сельскохозяйственных наук Малых, Павел Григорьевич

  • Научное обоснование методов улучшения качества продукции виноградарства в условиях юга России 2013 год, доктор сельскохозяйственных наук Панкин, Михаил Иванович

  • Совершенствование технологии ускоренного размножения интродуцированных сортов винограда в условиях Нижнего Придонья 2006 год, кандидат сельскохозяйственных наук Габибова, Елена Николаевна

Заключение диссертации по теме «Электротехнологии и электрооборудование в сельском хозяйстве», Кудряков, Александр Георгиевич

105 ВЫВОДЫ

1. Исследованиями и производственными испытаниями установлено, что предпосадачная электростимуляция черенков винограда улучшает кор-необразование черенков, что способствует более высокому выходу стандартных саженцев из школки.

2. Для осуществления электростимуляции черенков винограда целесообразно применять переменный ток частотой 50 Гц, подводя его к черенкам через токоподводящую жидкость.

3. Обоснованы оптимальные режимные параметры установки для электростимуляции черенков винограда. Напряжённость электрического поля в зоне обработки составляет 14 В/м, экспозиция обработки - 24 часа.

4. Производственные испытания, проведённые в АОЗТ "Родина" Крымского района показали, что разработанная установка работоспособна и позволяет повысить выход стандартных саженцев на 12%.

5. Экономический эффект от применения установки для электростимуляции корнеобразования черенков винограда составляет 68,5 тыс. рублей с 1 га.

Список литературы диссертационного исследования кандидат технических наук Кудряков, Александр Георгиевич, 1999 год

1. A.C. 1135457 (СССР). Устройство для стимулирования прививок электрическим током. С.Ю. Дженеев, A.A. Лучинкин, А.Н. Сербаев. Опубл. в Б. И., 1985, №3.

2. A.C. 1407447 (СССР). Устройство для стимуляции развития и роста растений. Пятницкий И.И. Опубл. в Б. И. 1988, № 25.

3. A.C. 1665952 (СССР). Способ выращивания растений.

4. A.C. 348177 (СССР). Устройство для стимуляции черенкового материала. Северский Б.С. Опубл. в Б. И. 1972, № 25.

5. A.C. 401302 (СССР). Устройство для прореживания растений./ Б.М. Скороход, A.C. Кащурко. Опубл. в Б. И, 1973, № 41.

6. A.C. 697096 (СССР). Способ стимулирования прививок. A.A. Лучинкин, С.Ю. Джанеев, М.И. Таукчи. Опубл. в Б. И., 1979, № 42.

7. A.C. 869680 (СССР). Способ обработки виноградных прививок./ Жген-ти Т.Г., Когорашвили B.C., Нишнианидзе К.А., Бабиашвили Ш.Л., Хо-мерики Р.В., Якобашвили В.В., Датуашвили В.Л. Опубл. в Б. И., 1981, №37.

8. A.C. 971167 СССР. Способ кильчевания виноградных черенков / Л.М. Малтабар, П.П. Радчевский. опубл. 07.11.82. // Открытия, изобретения, промышленные образцы, товарные знаки. - 1982. - № 41.

9. A.C. 171217 (СССР). Устройство для стимуляции черенкового материала. Кучава Г.Д. и др.

10. Ю.Алкиперов P.A. Применение электричества для борьбы с сорняками. -В кн.: труды Туркменского с. х. института. Ашхабад, 1975, вып. 18, №1, с. 46-51.11 .Ампелография СССР: Отечественные сорта винограда. М.: Лёг. и пищ. пром-сть, 1984.

11. Баев В.И. Оптимальные параметры и режимы работы разрядного контура при электроискровой предуборочной обработке подсолнечника. -Дисс. . канд. техн. наук. Волгоград, 1970. - 220 с.

12. Баран А.Н. К вопросу о механизме воздействия электрического тока на процесс электротермохимической обработки. В кн.: Вопросы механизации и электрификации с. х.: Тезисы докладов Всесоюзной школы учёных и специалистов. Минск, 1981, с. 176- 177.

13. Басов A.M. и др. Влияние электрического поля на корнеобразование у черенков. Сад и огород. 1959. № 2.

14. Басов A.M. и др. Стимуляция прививок яблони электрическим полем. Труды ЧИМЭСХ, Челябинск, 1963, вып. 15.

15. Басов A.M., Быков В.Г., и др. Электротехнология. М.: Агропромиз-дат,1985.

16. Басов A.M., Изаков Ф.Я. и др. Электрозерноочистительные машины (теория, конструкция, расчёт). М.: Машиностроение, 1968.

17. Батыгин Н.Ф., Потапова С.М. и др. Перспективы использования факторов воздействия в растиниеводстве. М.: 1978.

18. Беженарь Г.С. Исследование процесса электрообработки массы растений переменным током на косилках плющилках. Дисс. . канд. техн. наук. - Киев, 1980. - 206 с.

19. Блонская А.П., Окулова В.А. Предпосевная обработка семян сельскохозяйственных культур в электрическом поле постоянного тока в сравнении с другими физическими методами воздействия. Э.О.М., 1982, № 3.

20. Бойко A.A. Интенсификация механического обезвоживания зеленой массы. Механизация и электрификация соц. сел. хозяйства, 1995, № 12, с. 38-39.

21. Болгарев П.Т. Виноградарство. Симферополь, Крымиздат, 1960.

22. Бурлакова Е.В. и др. Малый практикум по биофизике. М.: Высшая школа, 1964.-408 с.

23. Виноградное питомниководство Молдавии. К., 1979.

24. Воднев В.Т., Наумович А.Ф., Наумович Н.Ф. Основные математические формулы. Минск, Вышэйшая школа, 1995.

25. Войтович К.А. Новые комплексно-устойчивые сорта винограда и методы их получения. Кишинёв: Картя Молдовеняске, 1981.

26. Гайдук В.Н. Исследование электротепловых свойств соломенной резки и расчёт электродных запарников: Автореф. дисс. . канд. техн. наук. -Киев, 1959, 17 с.

27. Гартман Х.Т., Кестер Д.Е. Размножение садовых растений. М.: 1963.

28. Гасюк Г.Н.,Матов Б.М. Обработка винограда электрическим током повышенной частоты перед прессованием. Консервная и овощесушильная промышленность, 1960, № 1, с. 9 11.31 .Голинкевич Г.А. Прикладная теория надёжности. М.: Высшая школа, 1977.- 160 с.

29. Грабовский Р.И. Курс физики. М.: Высшая школа, 1974.

30. Гузун Н.И. Новые сорта винограда Молдавии. Листок / МСХ СССР. -Москва: Колос, 1980.

31. Гунар И.И. Проблема раздражимости растений и дальнейшее развитие физиологии растений. Извест. Тимирязевской с. х. академии, вып. 2, 1953.

32. Дудник H.A., Щигловская В.И. Ультразвук в виноградном питомнико-водстве. В сб.: Виноградарство. - Одесса: Одесск. с. - х. ин-т, 1973, с. 138- 144.

33. Живописцев E.H. Электротехнология в сельскохозяйственном производстве. М.: ВНИИТЭИСХ, 1978.

34. Живописцев E.H., Косицин O.A. Электротехнология и электроосвещение. М.: ВО Агропромиздат, 1990.

35. Заявка № 2644976 (Франция). Способ стимулирования роста растений и/или деревьев и постоянные магниты для их осуществления.

36. Заявка № 920220 (Япония). Способ повышения продуктивности растительного и животного мира. Хаясихара Такэси.

37. Калинин Р.Ф. Повышение выхода черенков винограда и активация образования каллуса при прививке. В сб.: Уровни организации процессов у растений. - Киев: Наукова думка, 1981.

38. Каляцкий И.И., Синебрюхов А.Г. Энергетические характеристики канала искрового разряда импульсного пробоя различных диэлектрических сред. Э.О.М.,1966, № 4, с. 14 - 16.

39. Карпов Р.Г., Карпов Н.Р. Элктрорадиоизмерения. М.: Высшая школа, 1978.-272 с.

40. Киселёва P.A. Янтарная кислота как стимулятор роста привитых саженцев винограда. Агрономия, 1976, №5, с.133 - 134.

41. Коберидзе A.B. Выход в питомнике прививок виноградной лозы, обработанных стимуляторами роста. В сб.: Рост растений, Львов: Львовск. ун-т, 1959, с. 211-214.

42. Колесник JI.B. Виноградарство. К., 1968.

43. Кострикин И.А. Ещё раз о питомниководетве. "Виноград и вино России", №1, 1999, с. 10-11.

44. Кравцов A.B. Электрические измерения. М. ВО Агропромиздат, 1988. - 240 с.

45. Кудряков А.Г, Перекотий Г.П. Поиск оптимальных энергетических характеристик электрической цепи обработки черенков винограда. .// Вопросы электрификации сельского хозяйства. (Тр./Куб. ГАУ; Вып. 370 (298). - Краснодар, 1998.

46. Кудряков А.Г, Перекотий Г.П. Электростимуляция корнеобразования виноградных черенков.// Новое в электротехнологии и электрооборудовании сельскохозяйственного производства. - (Тр./Куб. ГАУ; Вып. 354 (382). Краснодар, 1996. - с. 18 - 24.

47. Куликова Т.И., Касаткин H.A., Данилов Ю.П. О возможности использования импульсного напряжения для предпосадочной электростимуляции картофеля. Э.О.М., 1989,№ 5, с. 62 63.

48. Лазаренко Б.Р. Интенсификация процесса извлечения сока электрическими импульсами. Консервная и овощесушильная промышленность, 1968, № 8, с. 9 - 11.

49. Лазаренко Б.Р., Решетько Э.В. Исследование влияния электрических импульсов на сокоотдачу растительного сырья. Э.О.М., 1968, № 5, с. 85-91.

50. Луткова И.Н., Олешко П.М., Быченко Д.М. Влияние токов высокого напряжения на укоренение черенков винограда. В и ВСССРД962, № 3.

51. Лучинкин A.A. О стимулирующем действии электрического тока на виноградные прививки. УСХА. Научные труды. Киев, 1980, вып. 247.

52. Макаров В.Н. и др. О влиянии СВЧ-облучения на рост плодовоягодных культур. ЭОМ. № 4. 1986.

53. Малтабар JI.M., Радчевский П.П. Руководство по производству прививок винограда на месте, Краснодар, 1989.

54. Малтабар Л.М., Радчевский П.П., Кострикин И.А. Ускоренное создание маточников интенсивного и суперинтенсивного типа. Виноделие и виноградарство СССР. 1987. - №2.

55. Малых Г.П. Состояние и перспективы развития питомниководства в России. "Виноград и вино России", №1, 1999, с. 8 10.

56. Мартыненко ИИ. Проектирование, монтаж и эксплуатация систем автоматики. М.: Колос. 1981. - 304 с.

57. Матов Б.М., Решетько Э.В. Электрофизические методы в пищевой промышленности. Кишинёв.: Картя Молдавеняскэ,1968, - 126 с.

58. Мельник С.А. Производство виноградного посадочного материала. -Кишинев: Госиздат Молдавии, 1948.

59. Мержаниан A.C. Виноградарство: 3-е изд. М., 1968.

60. Мичурин И.В. Избранные сочинения. М.: Сельхозгиз,1955.

61. Мишуренко А.Г. Виноградный питомник. 3-е изд. - М., 1977.

62. Павлов И.В. и др. Электрофизические методы предпосевной обработки семян. Механиз. и электрификация с. х. 1983. № 12.

63. Панченко А.Я., Щеглов ЮА. Электрическая обработка свекловичной стружки переменным электрическим током. Э.О.М., 1981,№ 5, с. 76 -80.

64. Пелих М.А. Справочник виноградаря. 2-е изд. - М., 1982.

65. Перекотий Г. П., Кудряков А. Г., Хамула А. А. К вопросу о механизме воздействия электрического тока на растительные объекты.// Вопросы электрификации сельского хозяйства. (Тр./Куб. ГАУ; Вып. 370 (298). -Краснодар, 1998.

66. Перекотий Г.П. Исследование процесса предуборочной обработки растений табака электрическим током. Дис. . канд. техн. наук. - Киев, 1982.

67. Перекотий Г.П., Кудряков А.Г. Винников A.B. и др. О механизме воздействия электрического тока на растительные объекты.// Научное обеспечение АПК Кубани. (Тр./Куб. ГАУ; Вып. 357 (385). - Краснодар, 1997.-с. 145- 147.

68. Перекотий Г.П., Кудряков А.Г. Исследование энергетических характеристик цепи электрообработки черенков винограда.// Энергосберегающие технологии и процессы в АПК (тезисы докладов научной конференции по итогам 1998 г.). КГАУ, Краснодар, 1999.

69. Пилюгина В.В. Электротехнологические способы стимуляции укоренения черенков, ВНИИЭСХ, НТБ по электрификации с. х., вып. 2 (46), Москва, 1982.

70. Пилюгина В.В., Регуш A.B. Электромагнитная стимуляция в растениеводстве. М.: ВНИИТЭИСХ, 1980.

71. Писаревский В.Н. и др. Электроимпульсное стимулирование семян кукурузы. ЭОМ. № 4, 1985.

72. Потебня A.A. Руководство по виноградарству. СПб, 1906.

73. Производство винограда и вина в России и перспективы его развития. "Виноград и вино России", №6, 1997, с. 2 5.

74. Радчевский П.П. Способ электрокильчевания виноградных черенков. Информ. Листок №603-85, Ростов, ЦНТИД985.

75. Радчевский П.П., Трошин Л.П. Методическое пособие по изучению сортов винограда. Краснодар, 1995.

76. Решетько Э.В. Использование электроплазмолиза. Механизация и электрификация соц. с. х., 1977, № 12, с. 11 - 13.

77. Савчук В.Н. Исследование электрической искры как рабочего органа предуборочной обработки подсолнечника. Дис. . канд. техн. наук. -Волгоград, 1970, - 215 с.

78. Саркисова М.М. Значение регуляторов роста в процессе вегетативного размножения, роста и плодоношения виноградной лозы и плодовых растений.: Автореф. дис. . доктора биолог, наук. Ереван, 1973- 45 с.

79. Свиталка Г.И. Исследование и выбор оптимальных параметров электроискрового прореживания всходов сахарной свеклы: Автореф. дис. . канд. техн. наук. Киев, 1975, - 25 с.

80. Серёгина М.Т. Электрическое поле как фактор воздействия обеспечивающий снятие периода покоя и активизацию ростовых процессов у растений лука репчатого на П3 этапе органогенеза. ЭОМ, № 4, 1983.

81. Серёгина М.Т. Эффективность использования физических факторов при предпосадочной обработке клубней картофеля. ЭОМ., № 1, 1988.

82. Соколовский A.B. Разработка и исследование основных элементов агрегата для предуборочной электроискровой обработки подсолнечника. Дис. . канд. техн. наук. - Волгоград, 1975, - 190 с.

83. Сорочану Н.С. Исследование электроплазмолиза растительных материалов с целью интенсификации процесса их сушки: Автореф. дис. . канд. техн. наук. Челябинск, 1979, - 21 с.

84. Тавадзе П.Г. Влияние стимуляторов роста на выход первосортных прививок у виноградной лозы. Докл. АН УССР, сер. Биол. науки, 1950, №5, с. 953-955.

85. Тарьян И. Физика для врачей и биологов. Будапешт, Медицинский университет, 1969.

86. Тихвинский И.Н., Кайсын Ф.В., Ланда Л.С. Влияние электрического тока на процессы регенерации черенков винограда. СВ и ВМ, 1975, № 3

87. Трошин Л.П., Свириденко H.A. Устойчивые сорта винограда: Справ, изд. Симферополь: Таврия, 1988.

88. Турецкая Р.Х. Физиология корнеобразования у черенков и стимуляторы роста. М.: Изд-во АН СССР, 1961.

89. Тутаюк В.Х. Анатомия и морфология растений. М.: Высшая школа, 1980.

90. Фоэкс Г. Полный курс виноградарства. СПб, 1904.

91. Фурсов С.П., Бордиян В.В. Некоторые особенности электроплазмолиза растительной ткани при повышенной частоте. Э.О.М., 1974, № 6, с. 70 -73.

92. Чайлахян М.Х., Саркисова М.М. Регуляторы роста у виноградной лозы и плодовых культур. Ереван: Изд-во АН Арм.ССР, 1980.

93. Червяков Д.М. Исследование электрического и механического воздействия на интенсивность сушки травы: Автореф. дис. . канд. техн. наук. -Челябинск, 1978, 17 с.

94. Шерер В.А., Гадиев Р.Ш. Применение регуляторов роста в виноградарстве и питомниководстве. Киев: Урожай, 1991.

95. Энциклопедия виноградарства в 3 т., том 1. Кишинёв, 1986.

96. Энциклопедия виноградарства в 3 т., том 2. Кишинёв, 1986.

97. Энциклопедия виноградарства в 3 т., том 3. Кишинёв, 1987.

98. Пупко В.Б. Реакщя виноградно1 лози на дно електромагштного поля. В зб.: Виноградарство i виноробство. - Киев: Урожай, 1974,№ 17.

99. Aktivace prerozenych elektickych proudu typu geo-fyto u sazenic revy virnie. Zahradnicfvi, 1986, 13.

100. Bobiloff W., Stekken van Hevea braziliensis, Meded. Alg. Proefst. Avros. Rubberserie, 94,123 126, 1934.

101. Christensen E., Root production in plants following localized stem irradiation, Science,119, 127-128, 1954.

102. Hunter R. E. The vegetative propagation of citrus, Trop. Agr., 9, 135 - 140, 1932.

103. Thakurta A. G., Dutt В. K. Vegetative propagation on mango from gootes (marcotte) and cuttings by treatment of high concentration auxin, Cur. Sci., 10, 297, 1941.

104. Seeliger R. Der neue Wienbau Crundlangen des Anbaues von Pfropfreben. -Berlin, 1933.-74p.рЩ^УТВЕРЖДАЮр по научной работе о ГАУ, профессор Ю.Д. Северин ^1999г.116

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Похожие публикации