Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Красная шаровая молния. Шаровая молния — миф или реальность? Как выглядит шаровая молния

Как это нередко бывает, систематическое изучение шаровых молний началось с отрицания их существования: в начале XIX века все известные к тому времени разрозненные наблюдения были признаны либо мистикой, либо в лучшем случае оптической иллюзией.

Но уже в 1838 году в «Ежегоднике» французского бюро географических долгот был опубликован обзор, составленный знаменитым астрономом и физиком Домиником Франсуа Араго.

Впоследствии он стал инициатором опытов Физо и Фуко по измерению скорости света, а также работ, приведших Леверье к открытию Нептуна.

Основываясь на известных тогда описаниях шаровых молний, Араго пришел к выводу, что многие из этих наблюдений нельзя считать иллюзией.

За 137 лет, прошедших с момента выхода в свет обзора Араго, появились новые свидетельства очевидцев, фотографии. Были созданы десятки теорий, экстравагантных и остроумных, которые объясняли некоторые известные свойства шаровой молнии, и таких, которые не выдерживали элементарной критики.

Фарадей, Кельвин, Аррениус, советские физики Я. И. Френкель и П. Л. Капица, многие известные химики, наконец, специалисты американской Национальной комиссии по астронавтике и аэронавтике NASA пытались исследовать и объяснить этот интересный и грозный феномен. А шаровая молния и поныне продолжает во многом оставаться загадкой.

Трудно, наверное, найти явление, сведения о котором так противоречили бы друг другу. Основных причин две: это явление очень редкое, и многие наблюдения проводятся крайне не квалифицированно.

Достаточно сказать, что за шаровую молнию принимались крупные метеоры и даже птицы, к крыльям которых прилипала труха гнилых, светящихся в темноте пней. И все-таки известно около тысячи достоверных наблюдений шаровой молнии, описанных в литературе.

Какие же факты должны связать ученые единой теорией, чтобы объяснить природу возникновения шаровой молнии? Какие ограничения накладывают наблюдения на нашу фантазию?

Первое, что нужно объяснить: почему шаровая молния возникает часто, если она возникает часто, или почему она возникает редко, если она возникает редко?

Пусть читателя не удивляет эта странная фраза — частота появления шаровой молнии все еще является спорным вопросом.

И еще нужно объяснить, почему шаровая молния (не зря же она так называется) действительно имеет форму, обычно близкую к шару.

И доказать, что она, вообще, имеет отношение к молниям, — надо сказать, не все теории связывают появление этого феномена с грозами — и не без оснований: иногда она возникает в безоблачную погоду как, впрочем, и другие грозовые явления, например, огни святого Эльма.

Здесь уместно вспомнить описание встречи с шаровой молнией, данное замечательным наблюдателем природы и ученым Владимиром Клавдиевичем Арсеньевым — известным исследователем дальневосточной тайги. Встреча эта произошла в горах Сихотэ-Алиня в ясную лунную ночь. Хотя многие параметры наблюдавшейся Арсеньевым молнии типичны, подобные случаи редки: обычно шаровые молнии возникают в грозу.

В 1966 году NASA распространила среди двух тысяч человек анкету, в первой части которой были заданы два вопроса: «Видели ли вы шаровую молнию?» и «Видели ли вы в непосредственной близости удар линейной молнии?»

Ответы дали возможность сравнить частоту наблюдения шаровой молнии с частотой наблюдения обычных молний. Результат оказался ошеломляющим: удар линейной молнии вблизи видели 409 человек из 2 тысяч, а шаровую молнию — два раза меньше. Нашелся даже счастливчик, встречавший шаровую молнию 8 раз,- еще одно косвенное доказательство того, что это совсем не такое редкое явление, как принято думать.

Анализ второй части анкеты подтвердил многие известные ранее факты: шаровая молния имеет в среднем диаметр около 20 см; светится не очень ярко; цвет чаще всего красный, оранжевый, белый.

Интересно, что даже наблюдатели, видевшие шаровую молнию близко, часто не ощущали ее теплового излучения, хотя при непосредственном прикосновении она обжигает.

Существует такая молния от нескольких секунд до минуты; может проникать в помещения через маленькие отверстия, восстанавливая затем свою форму. Многие наблюдатели сообщают, что она выбрасывает какие-то искры и вращается.

Обычно она парит на небольшом расстоянии от земли, хотя встречали ее и в облаках. Иногда шаровая молния спокойно исчезает, но иногда взрывается, вызывая заметные разрушения.

Уже перечисленных свойств достаточно, чтобы поставить исследователя в тупик.

Из какого вещества должна, например, состоять шаровая молния, если она не взлетает стремительно вверх, подобно воздушному шару братьев Монгольфье, наполненному дымом, хотя и нагрета, по крайней мере, до нескольких сотен градусов?

С температурой тоже не все ясно: судя по цвету свечения, температура молнии не меньше 8 000°К.

Один из наблюдателей, химик по специальности, знакомый с плазмой, оценил эту температуру в 13 000-16 000°К! Но фотометрование следа молнии, оставшегося на фотопленке, показало, что излучение выходит не только с ее поверхности, а и из всего объема.

Многие наблюдатели также сообщают, что молния полупрозрачна и через нее просвечивают контуры предметов. А это значит, что ее температура значительно ниже — не более 5 000 градусов, так как при большем нагреве слой газа толщиной в несколько сантиметров совершенно непрозрачен и излучает как абсолютно черное тело.

О том, что шаровая молния довольно «холодна», свидетельствует и сравнительно слабый тепловой эффект, производимый ею.

Шаровая молния несет большую энергию. В литературе, правда, часто встречаются заведомо завышенные оценки, но даже скромная реалистичная цифра — 105 джоулей — для молнии диаметром в 20 см весьма внушительна. Если бы такая энергия расходовалась только на световое излучение, она могла бы светиться много часов.

При взрыве шаровой молнии может развиться мощность в миллион киловатт, так как взрыв этот протекает очень быстро. Взрывы, правда, человек умеет устраивать и более мощные, но если сравнить со «спокойными» источниками энергии, то сравнение будет не в их пользу.

В частности, энергоемкость (энергия, отнесенная к единице массы) молнии значительно выше, чем у существующих химических аккумуляторов. Кстати, именно желание научиться аккумулировать сравнительно большую энергию в малом объеме и привлекло многих исследователей к изучению шаровой молнии. Насколько эти надежды могут оправдаться, говорить пока рано.

Сложность объяснения столь противоречивых и разнообразных свойств привела к тому, что существующие взгляды на природу этого явления исчерпали, кажется, все мыслимые возможности.

Некоторые ученые считают, что молния постоянно получает энергию извне. Например, П. Л. Капица предположил, что она возникает при поглощении мощного пучка дециметровых радиоволн, которые могут излучаться во время грозы.

Реально для образования ионизированного сгустка, каким является в этой гипотезе шаровая молния, необходимо существование стоячей волны электромагнитного излучения с очень большой напряженностью поля в пучностях.

Нужные условия могут осуществиться очень редко, так что, по мнению П. Л. Капицы, вероятность наблюдения шаровой молнии в заданном месте (то есть там, где расположился наблюдатель-специалист) практически равна нулю.

Иногда предполагают, что шаровая молния есть светящаяся часть канала, связывающего облако с землей, по которому течет большой ток. Образно говоря, ей отводится роль единственного видимого участка по каким-то причинам невидимой линейной молнии. Впервые эта гипотеза была высказана американцами М. Юманом и О. Финкельштейном, а в дальнейшем появилось несколько модификаций разработанной ими теории.

Общая трудность всех этих теорий в том, что они предполагают существование в течение длительного времени потоков энергии чрезвычайно высокой плотности и именно из-за этого обрекают шаровую молнию на «должность» чрезвычайно маловероятного явления.

Кроме того, в теории Юмана и Финкельштейна сложно объяснить форму молнии и ее наблюдаемые размеры — диаметр канала молнии обычно составляет около 3-5 см, а шаровые молнии встречаются и метрового диаметра.

Существует довольно много гипотез, предполагающих, что шаровая молния сама является источником энергии. Придуманы самые экзотические механизмы извлечения этой энергии.

В качестве примера такой экзотики можно привести идею Д. Эшби и К. Уайтхеда, согласно которой шаровая молния образуется при аннигиляции пылинок антивещества, попадающих в плотные слои атмосферы из космоса, а затем увлекаемых разрядом линейной молнии на землю.

Эту идею, может быть, можно было бы подкрепить теоретически, но, к сожалению, пока ни одной подходящей частицы антивещества обнаружено не было.

Чаще всего в качестве гипотетического источника энергии привлекаются различные химические и даже ядерные реакции. Но при этом трудно объяснить шаровую форму молнии — если реакции идут в газообразной среде, то диффузия и ветер приведут к выносу «грозового вещества» (термин Араго) из двадцатисантиметрового шара за считанные секунды и еще раньше деформируют его.

Наконец, нет ни одной реакции, о которой было бы известно, что она протекает в воздухе с нужным для объяснения шаровой молнии энерговыделением.

Многократно высказывалась такая точка зрения: шаровая молния аккумулирует энергию, выделяемую при ударе линейной молнии. Теорий, в основе которых лежит это предположение тоже немало, подробный обзор их можно найти в популярной книге С. Сингера «Природа шаровой молнии».

Эти теории, как, впрочем, и многие другие, содержат трудности и противоречия, которым уделено немалое внимание и в серьезной и в популярной литературе.

Кластерная гипотеза шаровой молнии

Расскажем теперь о сравнительно новой, так называемой кластерной гипотезе шаровой молнии, разрабатываемой в последние годы одним из авторов этой статьи.

Начнем с вопроса, почему же молния имеет форму шара? В общем виде ответить на этот вопрос несложно — должна существовать сила, способная удержать вместе частицы «грозового вещества».

Почему капля воды шарообразна? Такую форму придает ей поверхностное натяжение.

Поверхностное натяжение жидкости возникает из-за того, что ее частицы — атомы или молекулы — сильно взаимодействуют между собой, гораздо сильнее, чем с молекулами окружающего газа.

Поэтому, если частица оказывается вблизи границы раздела, то на нее начинает действовать сила, стремящаяся вернуть молекулу в глубину жидкости.

Средняя кинетическая энергия частиц жидкости примерно равна средней энергии их взаимодействия, поэтому молекулы жидкости и не разлетаются. В газах же кинетическая энергия частиц настолько превышает потенциальную энергию взаимодействия, что частицы оказываются практически свободными и о поверхностном натяжении говорить не приходится.

Но шаровая молния — газоподобное тело, а поверхностное натяжение у «грозового вещества», тем не менее, есть — отсюда и форма шара, которую чаще всего она имеет. Единственное вещество, которое могло бы иметь такие свойства — плазма, ионизированный газ.

Плазма состоит из положительных и отрицательных ионов и свободных электронов, то есть из частиц электрически заряженных. Энергия взаимодействия между ними гораздо больше, чем между атомами нейтрального газа, больше соответственно и поверхностное натяжение.

Однако при сравнительно низких температурах — скажем, при 1 000 градусов Кельвина — и при нормальном атмосферном давлении шаровая молния из плазмы могла бы существовать только тысячные доли секунды, так как ионы быстро рекомбинируют, то есть превращаются в нейтральные атомы и молекулы.

Это противоречит наблюдениям — шаровая молния живет дольше. При высоких температурах — 10-15 тысяч градусов — слишком большой становится кинетическая энергия частиц, и шаровая молния должна просто развалиться. Поэтому исследователям приходится использовать сильнодействующие средства, чтобы «продлить жизнь» шаровой молнии, сохранить ее хотя бы несколько десятков секунд.

В частности, П. Л. Капица ввел в свою модель мощную электромагнитную волну, способную постоянно порождать новую низкотемпературную плазму. Другим же исследователям, предполагающим, что молниевая плазма более горячая, пришлось придумывать, как бы удержать шар из этой плазмы, то есть решать задачу до сих пор не решенную, хотя и очень важную для многих областей физики и техники.

А что если пойти по другому пути — ввести в модель механизм, замедляющий рекомбинацию ионов? Попробуем использовать для этой цели воду. Вода — полярный растворитель. Ее молекулу можно грубо представить себе как палочку, один конец которой заряжен положительно, а другой — отрицательно.

К положительным ионам вода присоединяется отрицательным концом, а к отрицательным — положительным, образуя защитную прослойку — сольватную оболочку. Она может резко замедлить рекомбинацию. Ион вместе с сольватной оболочкой называется кластером.

Вот мы и подошли, наконец, к основным идеям кластерной теории: при разрядке линейной молнии происходит практически полная ионизация молекул, входящих в состав воздуха, в том числе и молекул воды.

Образовавшиеся ионы начинают быстро рекомбинировать, эта стадия занимает тысячные доли секунды. В какой-то момент нейтральных молекул воды становится больше, чем оставшихся ионов, и начинается процесс образования кластеров.

Он тоже длится, видимо, доли секунды и заканчивается образованием «грозового вещества» — похожего по своим свойствам на плазму и состоящего из ионизированных молекул воздуха и воды, окруженных сольватными оболочками.

Правда, пока все это только идея, и нужно посмотреть, может ли она объяснить многочисленные известные свойства шаровой молнии. Вспомним известную поговорку о том, что для рагу из зайца как минимум нужен заяц, и зададим себе вопрос: могут ли образовываться в воздухе кластеры? Ответ утешительный: да, могут.

Доказательство этого в буквальном смысле слова свалилось (было привезено) с неба. В конце 60-х годов с помощью геофизических ракет было проведено подробное исследование самого нижнего слоя ионосферы — слоя D , расположенного на высоте около 70 км. Оказалось, несмотря на то, что на такой высоте воды крайне мало, все ионы в слое D окружены сольватными оболочками, состоящими из нескольких молекул воды.

В кластерной теории предполагается, что температура шаровой молнии меньше 1000°К, поэтому от нее нет сильного теплового излучения. Электроны при такой температуре легко «прилипают» к атомам, образуя отрицательные ионы, и все свойства «молниевого вещества» определяются кластерами.

При этом плотность вещества молнии оказывается примерно равной плотности воздуха при нормальных атмосферных условиях, то есть молния может быть несколько тяжелее воздуха и опускаться вниз, может быть несколько легче воздуха и подниматься и, наконец, может находиться во взвешенном состоянии, если плотности «молниевого вещества» и воздуха равны.

Все эти случаи наблюдались в природе. Кстати, то, что молния опускается вниз, еще не значит, что она упадет на землю — прогрев под собой воздух, она может создать воздушную подушку, удерживающую ее на весу. Очевидно, поэтому парение — самый распространенный вид движения шаровой молнии.

Кластеры взаимодействуют между собой значительно сильнее, чем атомы нейтрального газа. Оценки показали, что возникающего поверхностного натяжения вполне достаточно, чтобы придать молнии шаровую форму.

Допустимое отклонение плотности быстро убывает с увеличением радиуса молнии. Так как вероятность точного совпадения плотности воздуха и вещества молнии мала, крупные молнии — больше метра в диаметре — встречаются крайне редко, маленькие же должны появляться чаще.

Но молнии размером меньше трех сантиметров тоже практически не наблюдаются. Почему? Для ответа на этот вопрос необходимо рассмотреть энергетический баланс шаровой молнии, выяснить, где в ней хранится энергия, сколько ее и на что она расходуется. Энергия шаровой молнии заключена, естественно, в кластерах. При рекомбинации отрицательного и положительного кластеров выделяется энергия от 2 до 10 электрон-вольт.

Обычно плазма теряет довольно много энергии в виде электромагнитного излучения — его появление связано с тем, что легкие электроны, двигаясь в поле ионов, приобретают очень большие ускорения.

Вещество молнии состоит из тяжелых частиц, ускорить их не так-то просто, поэтому электромагнитное поле излучается слабо и большая часть энергии выводится из молнии тепловым потоком с ее поверхности.

Тепловой поток пропорционален площади поверхности шаровой молнии, а запас энергии пропорционален объему. Поэтому маленькие молнии быстро теряют свои сравнительно небольшие запасы энергии, и, хотя они появляются гораздо чаще крупных, заметить их труднее: они слишком мало живут.

Так, молния диаметром в 1 см остывает за 0,25 секунд, а диаметром 20 см за 100 секунд. Эта последняя цифра примерно совпадает с максимальным наблюдаемым временем жизни шаровой молнии, но существенно превосходит среднее время ее жизни, равное нескольким секундам.

Наиболее реальный механизм «умирания» крупной молнии связан с потерей устойчивости ее границы. При рекомбинации пары кластеров образуется десяток легких частиц, что приводит при той же температуре к уменьшению плотности «грозового вещества» и нарушению условий существования молнии задолго до того, как исчерпается ее энергия.

Начинает развиваться поверхностная неустойчивость, молния выбрасывает куски своего вещества и как бы прыгает из стороны в сторону. Выброшенные куски почти мгновенно остывают, подобно маленьким молниям, и раздробленная большая молния заканчивает свое существование.

Но возможен и другой механизм ее распада. Если в силу каких-либо причин ухудшается отвод тепла, то молния начнет разогреваться. При этом увеличится число кластеров с малым количеством молекул воды в оболочке, они будут быстрее рекомбинировать, произойдет дальнейшее повышение температуры. В итоге — взрыв.

Почему светится шаровая молния

Какие же факты должны связать ученые единой теорией, чтобы объяснить природу шаровой молнии?

" data-medium-file="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?fit=300%2C212&ssl=1" data-large-file="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?fit=500%2C354&ssl=1" class="alignright size-medium wp-image-603" style="margin: 10px;" title="Природа шаровой молнии" src="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?resize=300%2C212&ssl=1" alt="Природа шаровой молнии" width="300" height="212" srcset="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?resize=300%2C212&ssl=1 300w, https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?w=500&ssl=1 500w" sizes="(max-width: 300px) 100vw, 300px" data-recalc-dims="1">Существует шаровая молния от нескольких секунд до минуты; может проникать в помещения через маленькие отверстия, восстанавливая затем свою форму

" data-medium-file="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?fit=300%2C224&ssl=1" data-large-file="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?fit=350%2C262&ssl=1" class="alignright size-medium wp-image-605 jetpack-lazy-image" style="margin: 10px;" title="Шаровая молния фото" src="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&ssl=1" alt="Шаровая молния фото" width="300" height="224" data-recalc-dims="1" data-lazy-srcset="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&ssl=1 300w, https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?w=350&ssl=1 350w" data-lazy-sizes="(max-width: 300px) 100vw, 300px" data-lazy-src="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&is-pending-load=1#038;ssl=1" srcset=""> Остановимся еще на одной загадке шаровой молнии: если ее температура невелика (в кластерной теории считается, что температура шаровой молнии около 1000°К), то почему же тогда она светится? Оказывается, и это можно объяснить.

При рекомбинации кластеров выделившееся тепло быстро распределяется между более холодными молекулами.

Но на какой-то момент температура «объемчика» вблизи рекомбинировавших частиц может превышать среднюю температуру вещества молнии более чем в 10 раз.

Вот этот «объемчик» и светится как газ, нагретый до 10 000-15 000 градусов. Таких «горячих точек» сравнительно мало, поэтому вещество шаровой молнии остается полупрозрачным.

Ясно, что с точки зрения кластерной теории шаровые молнии могут появляться часто. Для образования молнии диаметром в 20 см нужно всего несколько граммов воды, а ее во время грозы обычно предостаточно. Вода чаще всего распылена в воздухе, ну а в крайнем случае шаровая молния может «найти» ее для себя на поверхности земли.

Кстати, так как электроны очень подвижны, то при образовании молнии часть их может «потеряться», шаровая молния в целом окажется заряженной (положительно), и ее движение будет определяться распределением электрического поля.

Остаточный электрический заряд позволяет объяснить такие интересные свойства шаровой молнии, как ее способность двигаться против ветра, притягиваться к предметам и висеть над высокими местами.

Цвет шаровой молнии определяется не только энергией сольватных оболочек и температурой горячих «объемчиков», но и химическим составом ее вещества. Известно, что если при попадании линейной молнии в медные провода появляется шаровая молния, то она часто бывает окрашена в голубой или зеленый цвет — обычные «цвета» ионов меди.

Вполне возможно, что и возбужденные атомы металлов тоже могут образовывать кластеры. Появлением таких «металлических» кластеров можно было бы объяснить некоторые эксперименты с электрическими разрядами в результате которых появлялись светящиеся шары, похожие на шаровую молнию.

Из сказанного может создаться впечатление, что благодаря кластерной теории проблема шаровой молнии получила, наконец, свое окончательное разрешение. Но это не совсем так.

Несмотря на то что за кластерной теорией стоят вычисления, гидродинамические расчеты устойчивости, с её помощью удалось, по-видимому, понять многие свойства шаровых молний, было бы ошибкой сказать, что загадки шаровой молнии больше не существует.

В подтверждение один лишь штрих, одна деталь. В своем рассказе В. К. Арсеньев упоминает о тоненьком хвостике, протянувшемся от шаровой молнии. Пока мы не можем объяснить ни причину его возникновения, ни даже что это такое…

Как уже говорилось, в литературе описано около тысячи достоверных наблюдений шаровой молнии. Это конечно, не очень много. Очевидно, что каждое новое наблюдение при тщательном его анализе позволяет получить интересную информацию о свойствах шаровой молнии, помогает в проверке справедливости той или иной теории.

Поэтому очень важно, чтобы как можно больше наблюдений стало достоянием исследователей и сами наблюдатели активно участвовали в изучении шаровой молнии. Именно на это направлен эксперимент «Шаровая молния», о котором будет рассказано дальше.

Что скрывается за мистическим появлением загадочного сгустка энергии, которого так боялись средневековые европейцы?

Существует мнение, что это посланники внеземных цивилизаций или вообще, существа, наделенные разумом. Но так ли это на самом деле?

Давайте разберемся с этим необыкновенно интересным явлением.

Что такое шаровая молния

Шаровая молния – редкое природное явление, выглядящее как светящееся и плавающее в образование. Это светящийся шар, который появляется, как кажется, из ниоткуда и исчезает в разреженном воздухе. Его диаметр варьируется от 5 до 25 см. Кратко .

Обычно шаровую молнию можно увидеть непосредственно перед, после или во время грозы. Продолжительность самого явления колеблется в пределах от нескольких секунд до пары минут.

Продолжительность существования шаровой молнии имеет тенденцию увеличиваться с ее размером и уменьшаться с ее яркостью. Считается, что шаровые молнии, имеющие отчетливый оранжевый или голубой цвет, существуют дольше, чем обычные.

Шаровые молнии, как правило, летят параллельно земле, но также могут двигаться вертикальными скачками.

Обычно такая спускается с туч, но также может внезапно материализоваться на открытом воздухе или в помещении; она может проникать в комнату через закрытое или открытое окно, тонкие неметаллические стены или дымоход.

Загадка шаровой молнии

В первой половине 19 века французский физик, астроном и естествоиспытатель Франсуа Араго, возможно первым в цивилизации, произвёл сбор и систематизировал все известные на то время свидетельства появления шаровой молнии. В его книге было описано более 30 случаев наблюдения шаровых молний.

Выдвинутое некоторыми учеными предположение о том, что шаровая молния представляет собой плазменный шар, было отклонено, поскольку «горячий шар из плазмы должен был бы подняться вверх как аэростат», а этого шаровая молния как раз и не делает.

Некоторые физики предполагали, что шаровая молния появляется благодаря электрическим разрядам. Например, российский физик полагал, что шаровая молния – это возникающий без электродов разряд, который вызывается сверхвысокочастотными (СВЧ) волнами неизвестного происхождения, существующими между тучами и землей.

Согласно другой теории, наружные шаровые молнии вызываются атмосферным мазером (квантовым генератором СВЧ-диапазона).

Двое ученых из – Джон Абрамсон и Джеймс Диннис – уверены, что шаровые молнии состоят из клочковатых шариков горящего кремния, созданных ударом в землю обычной молнии.

Согласно их теории, когда молния ударяет в землю, распадаются на крошечные частицы кремния и его составляющие – кислород и углерод.

Эти заряженные частички соединяются в цепочки, которые продолжают формировать уже волокнистые сетки. Они собираются вместе в светящийся «клочковатый» шар, который подхватывается воздушными потоками.

Там он парит как шаровая молния или горящий шар из кремния, излучая энергию, поглощенную им от молнии в виде тепла и света, до тех пор, пока не сгорит.

В научной среде существует масса гипотез происхождения шаровых молний, о которых нет смысла рассказывать, так как все они являются только предположениями.

Шаровые молнии Николы Теслы

Первыми опытами по исследованию этого загадочного явления можно считать работы в конце 19 века. В своей краткой заметке он сообщает, что, при определённых условиях, зажигая газовый разряд, он, после выключения напряжения, наблюдал сферический светящийся разряд диаметром 2-6 см.

Однако Тесла (см. ) не сообщал подробности своего опыта, так что воспроизвести эту установку было затруднительно.

Очевидцы утверждали, что Тесла мог делать шаровые молнии на несколько минут, при этом он их брал в руки, клал в коробку, накрывал крышкой и опять доставал.

Исторические свидетельства

Многие физики 19 века, включая Кельвина и Фарадея, при своей жизни были склонны считать, что шаровая молния – это либо оптическая иллюзия, либо явление совершенно иной, неэлектрической природы.

Однако количество случаев, подробность описания явления и достоверность свидетельств возрастали, что привлекло внимание многих учёных, в том числе и известных физиков.

Приведем несколько достоверных исторических свидетельств наблюдения шаровой молнии.

Смерть Георга Рихмана

В 1753 году Георг Рихман, действительный член Академии Наук, погиб от удара шаровой молнией. Он изобрёл прибор для изучения атмосферного электричества, поэтому, когда на очередном заседании услышал, что надвигается , срочно отправился домой вместе с гравёром, чтобы запечатлеть явление.

Во время эксперимента из прибора вылетел синевато-оранжевый шар и ударил учёного прямо в лоб. Раздался оглушительный грохот, схожий с выстрелом ружья. Рихман упал замертво.

Случай с кораблём «Уоррен Хастингс»

Одно британское издание сообщало о том, что в 1809 году корабль «Уоррен Хастингс» во время шторма «атаковало три огненных шара». Команда видела, как один из них спустился и убил человека на палубе.

Того, кто решил забрать тело, ударил второй шар; его сбило с ног, на теле остались лёгкие ожоги. Третий шар убил ещё одного человека.

Команда отметила, что после происшествия над палубой стоял отвратительный запах серы.

Современные свидетельства

  • Во время Второй Мировой войны пилоты сообщали о странных явлениях, которые могут быть истолкованы как шаровая молния. Они видели маленькие шары, двигающиеся по необычной траектории.
  • 6 августа 1944 года в шведском городе Уппсала шаровая молния прошла сквозь закрытое окно, оставив за собой круглую дырку около 5 см в диаметре. Явление наблюдали не только местные жители. Дело в том, что сработала система слежения за разрядами молнии Уппсальского университета, которая находится на отделении изучения электричества и молнии.
  • В 2008 году в Казани шаровая молния залетела в окно троллейбуса. Кондуктор с помощью валидатора отбросила её в конец салона, где не было пассажиров. Через несколько секунд произошёл взрыв. В салоне находилось 20 человек, однако никто не пострадал. Троллейбус вышел из строя, валидатор нагрелся и побелел, но остался в рабочем состоянии.

С древних времен шаровые молнии наблюдали тысячи людей в разных уголках мира. У большинства современных физиков не вызывает сомнений тот факт, что шаровая молния реально существует.

Однако до сих пор нет единого академического мнения о том, что такое шаровая молния и чем вызывается этот природный феномен.

Понравился пост? Нажми любую кнопку.

Впервые научное описание шаровой молнии дал в книге «Гром и молния» французский физик Франсуа Араго в начале XIX века. Это первая книга о молнии, электрическую природу которой открыли за полвека до этого. В книге Араго были описаны два десятка случаев наблюдения шаровой молнии. Ее свойства до сих пор сложно определить, потому что описания в основном принадлежали людям, которые не были учеными, и делались обычно не по горячим следам.

Шаровая молния как трудно изучаемое и потому загадочное явление стало популярным в массовой культуре. Есть даже фильм о Джеймсе Бонде с таким названием. Но ученым, которые решаются исследовать это явление, необходимо быть очень осторожными, чтобы принимать во внимание только действительно достоверные данные. Недавно было опубликовано первое полноценное научное наблюдение шаровой молнии, но и оно вызывает вопросы.

Что называют шаровой молнией

Шаровой молнией очевидцы сразу же называют любое шаровое светящееся и движущееся явление в воздухе. Это может быть событие, которое увидели люди после удара молнии в высоковольтную линию или в дерево. Так же называют объект, который появился в комнате, вылетев из дымохода, или возник с шипением из розетки.

Исследователи, которые собирали информацию об этом явлении, опирались на довольно ненадежный источник - сообщения очевидцев. Свидетели явления говорят, что размеры шаровой молнии от пяти сантиметров до метра. Свечение длится от долей секунды до нескольких секунд и даже десятков секунд. При контакте с шаровой молнией люди часто испытывали сильный удар током, вплоть до смертельного. Некоторые наблюдатели говорили о шипении шаровой молнии, о том, что она представляла собой клубок светящихся каналов голубого цвета, но в крупных шаровых молниях были и красные цвета. Шаровая молния «проходит» сквозь стекла и ее даже как будто бы видели внутри самолетов.

Шаровую молнию чаще всего видят после удара обычной молнии. Но разряд молнии вблизи выглядит как очень яркая вспышка света. Поэтому в начале XX века были ученые, которые считали, что шаровая молния - это не физическое явление, а артефакт, засветка глаза (если посмотреть на яркую лампу-вспышку при фотографировании или стробоскоп на дискотеке, то на несколько секунд останется ощущение движущегося светового пятна в глазах, причем независимо от того, закрыты или открыты глаза).


Шаровая молния

// wikimedia.org

В чем главная проблема шаровой молнии

Огромный интерес к шаровой молнии вызван не тем, что она имеет форму шара, а тем, что до сих пор непонятна природа ее большого времени жизни. Вообще в природе, если у вас нет выделенного направления, многие явления принимают форму шара, например капли при падении. Нет серьезных проблем создавать сколько угодно времени с помощью слаботочных электрических дуг шаровое плазменное образование между двумя электродами. То же самое касается шарового плазменного образования в свободном пространстве, поддерживаемого пучком электромагнитного излучения СВЧ-диапазона (при большой изобретательности его можно создать даже в СВЧ-печке, что когда-то и сделали японские ученые). В этих явлениях к плазме разрядов подводится электромагнитная энергия извне, и проблем с поддержанием такой плазмы нет.

Но большинство исследователей и особенно «любителей» исходит из того, что к шаровой молнии не подводится внешняя энергия. Плазма - это газ, в котором много свободных электронов, и потому плазма обладает высокой проводимостью, через нее течет значительный ток, как по проводу с большим сопротивлением. Если перестать подводить к плазме энергию, то за несколько миллионных долей секунды электроны исчезнут, ток прекратится, плазма потухнет. А если это так, то надо объяснить, почему шаровая молния, если это плазменное образование, живет так долго.

Есть много удивительных оптических и электрических атмосферных явлений. Например, огни святого Эльма, которые «в ночь перед бурею на мачте горят», как в песне Булата Окуджавы. Для большинства из них нашли убедительные физические объяснения. Ученым понятно, как можно изучать даже такое нечастое явление, как обычную линейную молнию: каждую секунду на Земле происходят около ста разрядов. Грозовое облако формируется постепенно, и место, откуда возникнут разряды молнии, можно с неплохой точностью предсказать по изменению электрического поля на Земле и движению гидрометеоров (капель, ледышек, снежинок, снежной крупы и так далее) в грозовой ячейке, где накапливается основной электрический заряд. В это место можно направить объективы различных физических приборов.


Огни святого Эльма

// wikipedia.org

Часто во время грозы молнии стартуют с высоких зданий и телевизионных вышек (больше двухсот метров), на кончики которых также можно поставить приборы. Кроме того, ученые уже шестьдесят лет как научились вызывать молнию из грозового облака «на себя», то есть создавать так называемые триггерные молнии. Несмотря на это, многие ключевые проблемы обычной молнии по-прежнему мало изучены, что уж тут говорить про шаровую молнию. Так как непонятна ее природа, то и непонятно, где ее ожидать, вооружившись приборами.

Основные гипотезы

В начале ХХ века была гипотеза, в которой предполагалось, что из-за большого расстояния, с которого обычно наблюдается шаровая молния, мы не видим, как от облака к ней тянется тонкий плазменный канал - благодаря его току поддерживается существование шаровой молнии. Сейчас ученые достаточно много знают о токе обычной молнии и установили, что разряд длится максимум секунду, при этом он будет состоять из многих отдельных ярких ударов с большим током, между которыми существуют перерывы, во время которых ток на землю практически прекращается. А были зафиксированы шаровые молнии со временем жизни десять секунд и более, при этом никаких сильных ударов молнии через них не наблюдалось, иначе свидетели подобных событий просто получили бы электрические поражения такой силы, что не смогли бы потом рассказать о своих впечатлениях.

Также ученые хорошо знают по наземным и самолетным наблюдениям размер накопленных в облаке зарядов, и там их тоже не так много, чтобы обеспечить долгую жизнь плазменных образований. Получается, пока невозможно объяснить поддержание жизни шаровой молнии при помощи известных проявлений природного атмосферного электричества. Поэтому появилось множество экзотических объяснений природы шаровых молний, в том числе от ученых, заболевших этим явлением, из других областей физики, которые не очень разбираются в атмосферном электричестве и в своих гипотезах не учитывают весь накопленный наблюдательный материал.

Например, Петр Леонидович Капица, академик и нобелевский лауреат, предположил, что шаровая молния поддерживается пучком микроволнового излучения, как в СВЧ-печке, а само СВЧ-излучение идет от молнии. Но при изучении молнии не удалось обнаружить сколько-нибудь серьезных потоков СВЧ-излучения. СВЧ-излучение легко измеряется на больших расстояниях, так как его используют для обнаружения самолетов, ракет, измерения скорости автомобилей.

Некоторые ученые, занимавшиеся ядерной физикой, предположили, что у шаровой молнии есть ядерный источник энергии. Но ядерные процессы - это чудовищная энергия, которая не может порождаться молнией. Кроме того, она создает радиоактивность, которую также несложно измерить. В местах, где наблюдалась шаровая молния, несколько раз пытались измерить радиоактивность, но она не превышала естественный фон.

Если шаровая молния - физическое явление, то из нескольких тысяч надежных наблюдений можно вывести ее основные свойства. Поэтому ученому, который претендует на объяснение механизма шаровой молнии, необходимо не только предложить какой-то новый необычный источник внутренней энергии, поддерживающей шаровую молнию, но и объяснить в рамках данной гипотезы другие установленные свойства шаровой молнии. Почти никто из представляющих альтернативные гипотезы этого не делают, поэтому их идеи повисают в воздухе.

Мартин Юман, один из самых известных современных специалистов по изучению молний, вместе с коллегами инициировал триггерную молнию, запуская в облако ракету с заземленным проводом, получая мощный разряд между электродами специальной формы, но создать шаровую молнию и им не удалось.

Важное, но спорное свидетельство

В 2012 году китайские ученые снимали линейную молнию на спектрограф и скоростную камеру и зафиксировали некоторое шаровое явление, появившееся в момент удара обычной линейной молнии в землю. Это очень важное свидетельство. Их результаты опубликовали в самом престижном журнале по физике - Physical Review Letters , и редакторы оставили в названии термин «шаровая молния», что говорит о признании серьезными физиками возможности существования данного явления. Статья называлась «Наблюдения оптических и спектральных характеристик шаровой молнии» (Observation of the Optical and Spectral Characteristics of Ball Lightning , PRL 112, 035001 (2014) DOI: 10.1103/PhysRevLett.112.035001).


Спектр шаровой молнии, вызванной ударом молнии в почву

// wikipedia.org

Запись, на которой видно шаровое свечение, длится полторы секунды, что очень много. Появилось светящееся образование из канала линейной молнии непосредственно около поверхности земли. По их измерениям размеры шарового образования были вначале более десяти метров, а через целую секунду более пяти метров, и это очень много для шаровой молнии.

Светилась шаровая молния целую секунду почти равномерно, что совершенно невозможно без притока внешней энергии. Удалось зафиксировать спектральные линии, связанные с материалом почвы, куда ударила линейная молния, и снять спектр «шаровой молнии» (кремний, железо, кальций). Причем все время записи спектральные линии присутствовали, а это значит, что столько же времени существовала плазма, поддерживающая это свечение. Никаким горением такой спектр объяснить нельзя. Цвет шаровой молнии изменялся от фиолетового к красному. Двигалось светящееся образование со скоростью около девяти метров в секунду.

Хотелось бы поздравить китайских коллег с замечательным успехом, но в самой их работе есть довольно странный график колебаний светимости «шаровой молнии» с периодом около 100 Гц все время яркого свечения, что пропорционально промышленной частоте линий электропередачи (50 Гц). Авторы честно пишут, что в двадцати метрах от места, где ударила линейная молния и появилось это плазменное образование, находится высоковольтная линия электропередачи (ЛЭП) напряжением 35 кВ.

Двадцать метров - это не очень большое расстояние, и его по влажной земле может пройти канал молнии, достигнув опоры ЛЭП и повредив ее. В результате ток с ЛЭП может соединиться с местом контакта канала молнии с землей, где и существовала «шаровая молния». Получается, и в этом эксперименте нельзя исключить, что плазменное образование, называемое авторами шаровой молнией, не является полностью природным явлением, а, возможно, снабжается энергией тока, идущего от пробитой молнией ЛЭП. Тогда понятно, почему же плазма жила так долго: она питалась промышленной электроэнергией.

Жаль, что авторы не написали в статье, связались ли они с электроэнергетиками, которые должны были зафиксировать пробой ЛЭП, если он был. В любом случае это важное свидетельство в пользу плазменной природы если не самой «шаровой молнии», то шаровых плазменных явлений, которые может порождать линейная молния при ударе в высоковольтные ЛЭП или рядом с ними.

Химическая гипотеза

В настоящее время наиболее непротиворечивой является гипотеза о химической природе источника энергии шаровой молнии. Химические реакции могут протекать относительно долго, пока не исчерпаются химические вещества, участвующие в реакциях. Например, таким процессом может быть специфическая форма шарового горения (удавалось создать шаровые формы воспламенений горючих газов в лабораторных условиях, которые не взрывались и существовали секунды, перемещаясь по лабораторной камере).

Предположим, молния ударяет в район болот, где довольно часто наблюдаются испарения и скопления горючих газов вроде метана. Из-за высокой температуры во время удара молнии этот газ загорается и дальше горит, напоминая конфорку газовой плиты, у которой сняли крышку. Ведь так газ может гореть часами, если есть приток газа изнутри болота.

Но если считать шаровую молнию формой горения, то как объяснить ее электрические проявления вплоть до поражений людей и животных при контакте с шаровой молнией? Также очень сложно реализовать в природе движение горящего шара, подобное описанным наблюдателями. Обычно газы взрываются или быстро сгорают. Поэтому и химическая гипотеза не может объяснить многие важные свойства шаровой молнии, но она снимает проблему времени жизни, существующую в плазменной гипотезе.

Преимущество химической гипотезы в том, что не нужно привлекать совсем уж экзотические представления вроде «получения энергии из вакуума» или «холодного термояда». Но надежному китайскому эксперименту, описанному выше, данная гипотеза не соответствует, так как никаких болот там не было, а спектр горения коренным образом отличается от спектра, записанного китайцами. Впрочем, и китайскому эксперименту доверять до конца нельзя.

Моделирование шаровой молнии в лаборатории

Несколько групп в мире пытались смоделировать шаровую молнию в лаборатории. Есть исследователи, которые утверждают, что им удалось создать шаровую молнию при мощном разряде в парах воды. Они даже разместили фотографии в интернете. Но серьезных публикаций в рецензируемых научных журналах, подобных китайской, на эту тему так и не было - публикаций, где бы их опыты были подробно описаны, фиксировались современными приборами свойства плазмы, гарантировалось бы отсутствие подвода дополнительной энергии от внешних источников и так далее.


Эффект шаровой молнии, созданный разрядом высоковольтного конденсатора в резервуаре с водой

// wikimedia.org

Мало получить в лаборатории интересное долгоживущее шаровое светящееся явление - надо при этом привести серьезные аргументы в пользу того, что-то, что мы создали в лаборатории, имеет отношение к природному явлению, называемому шаровой молнией. Искра между шариками, проскакивающая в электрофорной машине, имеет, вопреки утверждениям школьных учителей, очень небольшое отношение к молнии. Она не может объяснить не только как рождается молния, но и как она пробивает промежуток облако - земля. То же самое касается создания в лаборатории долгоживущего шарового светящегося образования. Надо еще доказать, что эксперимент моделирует природное явление.

И все-таки шаровая молния по-прежнему бросает ученым серьезный вызов. Сегодня считается, что свидетельств существования шаровой молнии столько, что от них невозможно отмахнуться. Возможно, шаровая молния не просто явление, а сложная комбинация известных физических явлений, которую мы пока не можем отследить и расшифровать.

СУЩЕСТВУЕТ ЛИ ШАРОВАЯ МОЛНИЯ?

За долгую историю изучения шаровой молнии самыми частыми вопросами были не вопросы о том, как образуется этот шар или каковы его свойства, хотя проблемы эти достаточно сложны. Но чаще всего ставился вопрос: “А существует ли шаровая молния в действительности?” Этот постоянный скептицизм в значительной степени объясняется трудностями, возникающими при попытках экспериментального изучения шаровой молнии посредством существующих методов, а также отсутствием теории, которая дала бы достаточно полное или хотя бы удовлетворительное объяснение этого явления.

Те, кто отрицает существование шаровой молнии, объясняют сообщения о ней оптическими иллюзиями или ошибочным отождествлением с ней других естественных светящихся тел. Часто случаи возможного появления шаровой молнии приписываются метеорам. В некоторых случаях явления, описанные в литературе как шаровые молнии, по-видимому, действительно были метеорами. Однако следы метеоров почти неизменно наблюдаются как прямые линии, тогда как характерный для шаровой молнии путь, напротив, чаще всего искривлен. Далее, шаровая молния появляется, за очень редкими исключениями, во время гроз, метеоры же наблюдались в подобных условиях лишь случайно. Обычный разряд молнии, направление канала которого совпадает с лучом зрения наблюдателя, может показаться шаром. В результате может возникнуть оптическая иллюзия - ослепительный свет вспышки сохраняется в глазу как изображение, даже когда наблюдатель меняет направление луча зрения. Именно поэтому высказывались предположения, что ложное изображение шара кажется перемещающимся по сложной траектории.

В первом подробном обсуждении проблемы шаровой молнии Араго (Доминик Франсуа Жан Араго - французский физик и астроном, опубликовавший первую в мировой научной литературе обстоятельную работу о шаровой молнии, обобщив собранные им 30 наблюдений очевидцев, чем положил начало исследованию этого природного явления) коснулся этого вопроса. В дополнение к ряду, по-видимому, надежных наблюдений он отметил, что у наблюдателя, видящего опускание шара под некоторым углом со стороны, оптическая иллюзия, подобная описанной выше, возникнуть не может. Доводы Араго, видимо, показались достаточно убедительными Фарадею: отвергая теории, согласно которым шаровая молния представляет собой электрический разряд, он подчеркнул, что отнюдь не отрицает существования этих сфер.

Через 50 лет после выхода в свет обзора проблемы шаровой молнии, сделанного Араго, вновь было высказано предположение о длительном сохранении образа обычной молнии, двигавшейся прямо на наблюдателя, и лорд Кельвин в 1888 г. на заседании Британской ассоциации развития науки утверждал, что шаровая молния - это оптическая иллюзия, порождаемая ярким светом. Тот факт, что во многих сообщениях назывались одни и те же размеры шаровой молнии, был приписан тому, что иллюзия эта связана со слепым пятном в глазу.

Дискуссия между сторонниками и противниками этих точек зрения произошла на заседании Французской академии наук в 1890 г. Темой одного из докладов, представленных в Академию, были многочисленные светящиеся сферы, появившиеся в торнадо и напоминающие шаровые молнии. Эти светящиеся сферы влетали в дома через дымоходы, пробивали круглые дыры в окнах и вообще проявляли весьма необычные свойства, приписываемые шаровой молнии. После доклада один из членов Академии заметил, что к удивительным свойствам шаровой молнии, о которых шла речь, следует отнестись критически, поскольку наблюдатели, по-видимому, стали жертвами оптических иллюзий. Во вспыхнувшей бурной дискуссии наблюдения, сделанные необразованными крестьянами, были объявлены не заслуживающими внимания, после чего присутствовавший на заседании бывший император Бразилии - иностранный член Академии - заявил, что он тоже видел шаровую молнию.

Многие сообщения о естественных светящихся сферах объясняли тем, что наблюдатели ошибочно принимали за шаровую молнию огни св. Эльма. Огни св. Эльма - это сравнительно часто наблюдаемые светящиеся области, образуемые коронным разрядом на конце заземленного предмета, скажем столба. Они возникают, когда напряженность атмосферного электрического поля значительно возрастает, например, во время грозы. При особенно сильных полях, которые часто бывают близ горных вершин, эта форма разряда может наблюдаться на любом предмете, возвышающемся над землей, и даже на руках и головах людей. Однако если считать движущиеся сферы огнями св. Эльма, то надо предположить, что электрическое поле непрерывно перемещается от одного предмета, играющего роль разрядного электрода, к другому аналогичному предмету. Сообщение о том, что такой шар двигался над рядом елей, пытались объяснить тем, что над этими деревьями проходила туча со связанным с ней полем. Сторонники этой теории считали огнями св. Эльма и все другие светящиеся шары, отделявшиеся от первоначального места прикрепления и летавшие по воздуху. Поскольку коронный разряд обязательно требует наличия электрода, отделение подобных шаров от заземленного острия указывает, что речь идет о каком-то другом явлении, возможно, о другой форме разряда. Существует несколько сообщений об огненных шарах, которые вначале находились на остриях, играющих роль электродов, а затем свободно передвигались описанным выше способом.

В природе наблюдались и другие светящиеся объекты, которые иногда принимали за шаровую молнию. Например, козодой - ночная насекомоядная птица, к перьям которой порой прилипают светящиеся гнилушки от дупла, в котором она гнездится, летает зигзагами над землей, заглатывая насекомых; с некоторого расстояния его можно принять за шаровую молнию.

Тот факт, что в каждом конкретном случае шаровая молния может оказаться чем-то иным, является весьма веским доводом против ее существования. Крупный исследователь токов высоких напряжений однажды заметил, что, в течение многих лет занимаясь наблюдениями гроз и их панорамным фотографированием, он ни разу не видел шаровой молнии. Кроме того, беседуя с предполагаемыми очевидцами шаровой молнии, этот исследователь всегда убеждался, что их наблюдения могут иметь иное и вполне обоснованное толкование. Постоянное возрождение таких доводов подчеркивает важность подробных и надежных наблюдений шаровой молнии.

Чаще всего наблюдения, на которые опираются знания о шаровой молнии, подвергались сомнению потому, что эти таинственные шары видели только люди, не имевшие никакой научной подготовки. Это мнение оказалось на деле совершенно неверным. Появление шаровой молнии наблюдал с расстояния всего в нескольких десятках метров ученый, сотрудник одной немецкой лаборатории, изучающей атмосферное электричество; молнию наблюдал также работник токийской Центральной метеорологической обсерватории. Очевидцами шаровой молнии были также метеоролог, физики, химик, палеонтолог, директор метеорологической обсерватории и несколько геологов. Среди ученых разных специальностей чаще видели шаровые молнии и сообщали о них астрономы.

В очень редких случаях при появлении шаровой молнии очевидцу удавалось получить снимки. Этим фотографиям, как и другим сведениям, касающимся шаровой молнии, часто уделялось недостаточное внимание.

Собранные сведения убедили большинство метеорологов в необоснованности их скептицизма. С другой стороны, нет сомнений в том, что многие ученые, работающие в других областях, придерживаются негативной точки зрения, как из-за интуитивного скептицизма, так и из-за недоступности данных о шаровой молнии.

Похожие публикации