Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Тяжелая вода, ее получение и свойства. Что такое "тяжелая вода"? Химические свойства обычной и тяжелой воды

О.В.Мосин

Тяжёлая вода (оксид дейтерия) - имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода - атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D2O или 2H2O. Внешне тяжёлая вода выглядит как обычная - бесцветная жидкость без вкуса и запаха.

По своим свойствам тяжелая вода заметно отличается от обычной воды. Реакции с тяжелой водой протекают медленнее, чем с обычной, константы диссоциации молекулы тяжёлой воды меньше таковых для обычной воды.

Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году году. А уже в 1933 году Гильберт Льюис получил чистую тяжёловодородную воду путём электролиза обычной воды.

В природных водах соотношение между тяжёлой и обычной водой составляет 1:5500 (в предположении, что весь дейтерий находится в виде тяжёлой воды D2O, хотя на самом деле он частично находится в составе полутяжёлой воды HDO).

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. В этом отношении тяжёлая вода менее токсична, чем, например, поваренная соль.

Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200-250 долларов за кг).

Физические свойства обычной и тяжёлой воды

Свойства тяжёлой воды

Важнейшим свойством тяжёлой воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя . Она используется также в качестве изотопного индикатора в химии и биологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино в Канаде содержит 1 килотонну тяжёлой воды.

Российскими учёными из ПИЯВ разработаны на опытных установках оригинальные технологии получения и очистки тяжелой воды. В 1995 была введена в эксплуатацию первая в России и одна из первых в мире опытно-промышленная установка на основе метода изотопного обмена в системе вода-водород и электролиза воды (ЭВИО).

Высокая эффективность установки ЭВИО дает возможность получать тяжелую воду с содержанием дейтерия > 99,995 % ат. Отработанная технология обеспечивает высокое качество тяжелой воды, включая глубокую очистку тяжелой воды от трития до остаточной активности, позволяющей без ограничений использовать тяжелую воду в медицинских и научных целях. Возможности установки позволяют полностью обеспечить потребности российских предприятий и организаций в тяжелой воде и дейтерии, а также экспортировать часть продукции. За время работы для нужд Росатома и других предприятий России были произведены более 20 тонн тяжёлой воды и десятки килограммов газообразного дейтерия.

Существует также и полутяжёлая (или дейтериевая) вода, у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO.

Термин тяжёлая вода применяют также по отношению к воде, у которой любой из атомов заменен тяжёлым изотопом:

К тяжёлокислородной воде (в ней лёгкий изотоп кислорода 16O замещен тяжёлыми изотопами 17O или 18O),

К тритиевой и сверхтяжёлой воде (содержащей вместо атомов 1H его радиоактивный изотоп тритий 3H).

Если подсчитать все возможные различные соединения с общей формулой Н2О, то общее количество возможных «тяжёлых вод» достигнет 48. Из них 39 вариантов - радиоактивные, а стабильных вариантов всего девять:
Н216O, Н217O, Н218O, HD16O, HD17O, HD18O, D216O, D217O, D218O.
На сегодняшний день в лабораториях получены не все варианты тяжёлой воды.

Тяжелая вода играет значительную роль в различных биологических процессах . Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 50% концентрацией дейтерия (так называемая "бездейтериевая" вода) обладает антимутагенными свойствами, способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.

За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через недолгое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.

Тогда Российские исследователи взялись за "облегченную" воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. "Бездейтериевую" воду исследователи получали по технологии, разработанной в Институте космической биологии. В основе метода лежит электролиз дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах - обычную. Животные начали пить "облегченную" и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.

Вода с пониженным содержанием дейтерия задерживает появление первых узелков на месте перевивки рака шейки матки. На время возникновения узелков других типов опухоли облегченная вода не действует. Но во всех опытных группах, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.

И тогда раздались голоса в пользу полного изъятия дейтерия из употребленной в пищу воды. Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов .

В далеком прошлом человек не задумывался над тем, что представляет собой вода и каково ее происхождение. Существовало мнение, что это элемент, но теперь известно, что она является химическим соединением.

В 1932 г. весь мир облетела новость, что на планете Земля кроме простой есть и тяжелая вода. Сейчас уже известно, что может быть 135 ее изотопных разновидностей.

Состав

Тяжелая вода, которая еще называется оксидом дейтерия, по химическому составу не отличается от простой обычной, но вместо атомов водорода, содержащихся в воде, в ней присутствуют 2 тяжелых изотопа водорода, так называемого дейтерия. Тяжелая вода имеет формулу 2H2O или D2O. Внешне нет различий между тяжелой и простой жидкостью, но по своим свойствам они отличаются.

Химические реакции в тяжелой воде протекает слабее, чем в обычной.

Тяжелая вода слаботоксична. Научные эксперименты показали, что замещение атомов легкого водорода дейтерием на 25%, вызывает бесплодие у животных. Если еще больше увеличить его содержание в воде, животное погибает. Однако ряд организмов выживает при 70% дейтерия Человек без последствий для здоровья может выпить около стакана такой жидкости. При выводится из организма в течение нескольких дней.

Тяжелая вода обладает свойством накапливаться в остатке электролита, если проводится многоразовый Она поглощает пары простой жидкости на открытом воздухе, т.е. она гигроскопична.

Одним из самых важных свойств данного типа воды является то, что она почти не поглощает нейтроны, а это позволяет ее применять в ядерных реакторах для процесса торможения нейтронов, а в химии ее используют как изотопный индикатор.

Тяжелая вода, получение

В 1933-1946 годах единственным методом обогащения являлся электролиз. Уже позже появились более прогрессивные технологии. Современным массовым производством во входном потоке используется жидкость, дистиллированная из электролита, с содержанием в ней тяжелой воды 0,1-0,2 %.

Первая стадия концентрирования применяет двухтемпературную противоточную сероводородную технологию изотопного обмена, концентрация на выходе тяжёлой воды составляет 5-10 %. Вторая стадия — каскадный электролиз щелочного раствора при нулевой температуре, выходная концентрация - 99,75-99,995 %.

Российскими учеными были разработаны оригинальные технологии для производства и очистки тяжелой воды. В 1995 года установка, обладающая высокой эффективностью, была введена в промышленную эксплуатацию. Производство полностью обеспечивает потребность предприятий тяжелой водой в любом объеме, а также позволяет экспортировать ее за границу.

Применение

Тяжелая вода используется в различных биологических и химических процессах. Учеными было определено, что такая жидкость препятствует развитию бактерий, грибов, водорослей, а если в ней содержится 50 % дейтерия, то приобретает антимутагенные свойства, способствует росту биологической массы и ускорению полового созревания у людей.

Европейские ученые проводили опыты на мышах со злокачественной опухолью. Тяжелая вода погубила и болезнь, и ее носителей. Было установлено, плохо действует на растения и животных. У подопытных, которых поили тяжелой водой, разрушались почки и расстраивался обмен веществ. При высоких дозах воды животные погибали. При небольшом объеме (до 25%), животные набирали вес и приносили хороший приплод, а у кур увеличивалась яйценоскость.

Вопрос о том, что произойдет, если совершенно избавиться от дейтерия, пока остается открытым.

Сравнение свойств легкой и тяжелой воды

Ответ на вопрос о различии между природной легкой и тяжелой жидкостью зависит от того, кому он был задан.

По химическим свойствам между ними нет практически никакой разницы. В каждой из них натрий одинаково выделяет водород, при электролизе и та, и другая вода одинаково разлагается, их химические свойства тоже совпадают, потому что у них одинаковый состав.

Этих жидкостей разные: и замерзания у них неодинаковая, также у них разная плотность и упругость пара. Тяжелая и легкая вода разлагаются при электролизе с разной скоростью.

С биологической точки зрения - вопрос достаточно сложный, здесь еще нужно поработать.

В феврале 1944 года в районе норвежской долины Ръюкан разворачивалась диверсионная операция союзных войск «Тяжелая вода», целью которой было препятствование созданию нацистской Германией атомного заряда. Станцию Веморк, на которой шло производство сырья для научных исследований, удалось взорвать. Позже выяснилось, что даже в случае провала операции работы по созданию бомбы все равно гитлеровцы не успели бы завершить. Но в начале 1944 года об этом никто не знал…

Физико-химические свойства тяжелой воды

Формулу обычной воды сегодня знает каждый школьник, но человечеству она известна лишь немногим более двух веков. Отрыта она была в 1805 году Гей-Люссаком и Гумбольдтом, которые установили, что каждая молекула самой распространенной на Земле жидкости состоит из одного атома водорода и двух кислорода. 1932 год дополнил это знание новой информацией. В каждом глотке чая, кофе и любого другого напитка кроме Н2О есть, правда, совсем немного другой составляющей, отличающейся тем, что водород-протий заменен на дейтерий D, тяжелый изотоп этого химического элемента таблицы Менделеева. Соединению было присвоено название «тяжелая вода». Получение ее через год Ричардом Макдональдом и Гербертом Льюисом в чистом виде открыло возможность для научных исследований. Сравнение свойств легкой и тяжелой воды показало, что плотность и вязкость D2O больше, чем у Н2О. Это полностью соответствовало теоретическим расчетам. Разница в 10% соответствует соотношению молекулярных весов протия (легкого водорода) и дейтерия, 18 и 20 соответственно. Отличаются температуры кипения и замерзания, у тяжелой воды они выше (101,42 и +3,8 градусов Цельсия соответственно).

Действие тяжелой воды на живые организмы

Несмотря на то, что D2O в воде присутствует в очень малых количествах (миллионные доли процента), его содержание оказывает влияние на жизнедеятельность организмов. Чаще встречается тяжелая вода, в которой изотоп заменил не два, а один атом водорода, ее формула HDO. Действие обеих разновидностей на обмен веществ определяется как угнетающее, подопытные животные умирают от почечной недостаточности при употреблении смеси H2O и HDO в соотношении 3 к 1. При поливе растений этим соединением прекращается их рост. И напротив, чем меньшую долю занимает тяжелая вода, тем активнее идут жизненные процессы. Интересный факт - чем ближе к полюсам, тем вода «легче».

Применение тяжелой воды

Тяжелая вода служит замедлителем быстрых нейтронов при термоядерных реакциях. Из единицы массы дейтерия можно извлекать энергии в десять миллионов раз больше, чем при сжигании того же количества угля. Дальнейшие исследования природы изотопов выявили наличие в атмосфере и возможность лабораторного получения сверхтяжелой воды Т20, в которой место водорода занимает радиоактивный тритий с атомной массой, равной 3. Полученные искусственным путем изотопы водорода 4H и 5H также могут совместно с кислородом образовывать сверхтяжелую воду, их используют в качестве «меченых атомов» при проведении научных экспериментов.

Ядерное оружие начало вызывать у людей страх уже с того самого момента, когда теоретически была доказана возможность его создания. И уже более полувека мир живет в этом страхе, меняется лишь его величина: от паранойи 50-60-х до перманентной тревоги сейчас. Но как вообще стала возможной подобная ситуация? Как в человеческий разум могла прийти сама идея создания такого жуткого оружия? Мы ведь знаем, что ядерная бомба фактически была создана руками величайших ученых-физиков тех времен, многие из них были на тот момент нобелевскими лауреатами или стали ими впоследствии.

Автор попытался дать понятный и доступный ответ на эти и многие другие вопросы, рассказав о гонке за обладание ядерным оружием. Главное внимание при этом уделяется судьбам отдельных ученых-физиков, непосредственно причастных к рассматриваемым событиям.

Тяжелая вода

Тяжелая вода

Гейзенберг погрузился в изучение необходимой литературы и в декабре 1939 года предоставил военному министерству первую часть детального отчета под названием «Возможность производства технической энергии делением ядра урана». Данная работа Гейзенберга и легла в основу будущей ядерной программы Германии.

Ученый изначально все свои усилия направил на изучение физических процессов, происходящих в ядерном реакторе или, как его еще называли, «урановом котле». Он не видел необходимости отделять эти процессы от тех, которые будут происходить в урановой бомбе, считая их просто противоположными концами сплошного спектра. Одним концом должен был стать реактор, построенный на природном уране с использованием подходящего замедлителя. На другом конце спектра, таким образом, находилось взрывное устройство, состав которого должен быть максимально приближен к «чистому» урану-235.

По расчетам Гейзенберга, для создания реактора, в котором возможна самоподдерживающаяся цепная реакция, требуется свыше тонны урана и приблизительно тонна тяжелой воды. Реактор должен иметь сферическую форму и стабильно работать при температуре около 800°C. Габариты реактора можно несколько уменьшить, используя послойное расположение его элементов, что настойчиво предлагал сделать Гартек. Гейзенберг дополнил его отчет, отметив в качестве заключения, что, по всей видимости, дальнейшее уменьшение размеров реактора возможно за счет обогащения используемого урана изотопами U 235 . Обогащение урана, по его словам, было «единственным способом получения взрывчатого вещества, сила которого на несколько порядков превышает все, чем до этой поры располагало человечество». На данном этапе исследований Гейзенберг пока еще не выяснил, что станет лучшим замедлителем - тяжелая вода или графит.

Военное министерство предложило контракт на производство и поставку большого количества обогащенной окиси урана компании Auer , руководство которой находилось в Берлине. Auer могла поставлять уран из окрестностей чехословацкого Йоахимсталя . Радиологической лабораторией компании в то время руководил Николай Риль, русский химик. Когда-то он изучал ядерную химию и физику у Гана и Мейтнер и теперь немедленно разместил производственное оборудование в Ораниенбурге, всего в 32 километрах севернее Берлина. Первая тонна окиси урана была поставлена уже в начале 1940 года.

Получить нужное количество тяжелой воды было сложнее. Единственным предприятием, производящим ее в промышленных масштабах, был завод норвежской компании Norsk Hydro. Тяжелая вода вырабатывалась там как побочный продукт при производстве удобрений. Первую ее партию получили в 1934 году. Завод, действовавший в поселке Веморк неподалеку от города Рьюкан в губернии Телемарк, находился на возвышенности среди фьордов. Это был дальний уголок Норвегии, удаленный от Осло на 240 километров к западу.

Таким образом, более подходящим кандидатом на роль замедлителя казался графит: он был легко доступен в чистом виде и в больших количествах. Однако предварительные результаты, полученные командой исследователей из Гейдельберга, которую возглавлял химик Вальтер Боте, уже позволяли сделать вывод о непригодности графита в подобном качестве, поскольку он слишком быстро поглощал свободные нейтроны. То же предсказывал и Вайцзеккер, проведя в Берлине теоретические изыскания вместе со своей группой.

Во втором отчете Гейзенберга, предоставленном в военное министерство в феврале 1942 года, было четко видно, что он все больше склоняется к тяжелой воде как замедлителю в реакторе. Конечно, такой вариант считался менее удобным: получить то количество субстанции, которое требовалось для нужд проекта, было весьма непросто. Дибнер думал о необходимости сооружения завода по производству тяжелой воды в самой Германии. Но, по мнению Гейзенберга, для начала достаточно найти всего несколько литров тяжелой воды и опытным путем проверить ее пригодность в качестве замедлителя. Дибнер пообещал доставить ему десять литров с завода Norsk Hydro.

Однако норвежцы не были расположены к сотрудничеству. С Norsk Hydro связался представитель гигантского германского химического синдиката IG Farben, владевшего пакетом акций этой норвежской компании. Он предложил выкупить все имевшиеся в наличии запасы тяжелой воды. В то время завод в Веморке производил около десяти литров в год, что полностью удовлетворяло не совсем понятные нужды исследовательских лабораторий - основных клиентов предприятия. На вопрос о том, зачем ему нужно такое большое количество тяжелой воды, представитель IG Farben вразумительного ответа дать не смог. Норвежцы принесли свои извинения и ответили на его просьбу отказом, заявив, что не могут дать немцам того, что они хотят.

Вскоре после этого визита к Norsk Hydro с похожим предложением обратился Жак Аллье - и получил прямо противоположный ответ. Аллье был представителем Banque de Paris et des Pays Bas, владевшего контрольным пакетом акций норвежской компании, и лейтенантом Второго бюро - французской военной разведслужбы. Жолио-Кюри, находившийся в Париже, также пришел к выводу о возможности использования тяжелой воды в качестве замедлителя в реакторе и сообщил министру вооружений о важности этой субстанции для ядерных исследований.

Аллье прибыл в Осло под вымышленным именем. Имея при себе чек на 36 миллионов франков, он попытался начать переговоры о продаже ему всей тяжелой воды, что была в наличии на заводе. Но когда стало ясным ее истинное предназначение, директор Norsk Hydro Аксель Оберт безвозмездно передал французскому правительству всю тяжелую воду, какая имелась на предприятии. «Передайте [им] , что наша компания не возьмет ни сантима за эту продукцию, если она хоть как-то поможет Франции одержать победу», - сказал он. Из Веморка тяжелую воду сначала тайно перевезли самолетом в Эдинбург, а затем на пароме и по железной дороге переправили в Париж.

Похожие страницы

Регулярно мы слышим фразу «тяжелая вода», а что это такое мало кто знает. Попробуем разобраться, из чего же образуется тяжелая вода и вообще бывает ли такая вода. Ученые разных стран считают, что тяжелая вода очень дорога и дефицитна. Однако если удастся найти дешевый и практичный способ ее получения, то области применения этого редкого соединения. Откроются новые страницы в химии, биологии, а это новые материалы, неизвестные соединения и, может быть, неожиданные формы жизни. Вода в природе бывает нескольких видов, различаемых по входящим в состав молекул изотопам водорода:

    обычная вода (протий);

    тяжелая или дейтериевая вода;

    полутяжёлая;

    сверхтяжелая, или тритиевая, (в природе почти не встречается);

Различается вода и по изотопному составу кислорода. Всего же насчитывается не менее 18 ее изотопных разновидностей. Если мы откроем водопроводный кран и наберем чайник, то там будет не однородная вода, а ее смесь. Получается, что тяжелая вода есть повсюду – в каждой капле! Проблема в том, как ее взять. Ныне во всем мире ее добыча связана с огромными затратами энергии и очень сложным оборудованием. Однако есть предположение, что на планете Земля возможны такие природные ситуации, когда тяжелая и обычная вода на какое-то время отделяются одна от другой – тяжёлая вода из рассеянного, растворенного состояния переходит в концентрированное. Так, может быть, существуют месторождения тяжелой воды? Пока однозначного ответа нет: никто из исследователей этим вопросом прежде не занимался. А вместе с тем известно, что физико-химические свойства тяжёлой воды совсем иные, чем у обычной воды – ее антипода. Так, температура кипения тяжелой воды +101,4°С, а замерзает она при +3,81°С. Ее плотность на 10 процентов больше, чем у обычной. Надо также заметить, что происхождение тяжелой воды, по-видимому, сугубо земное – в космосе ее следов не обнаружено. Мировой океан, ледники, атмосферная влага – вот природные “фабрики” тяжелой воды. Разница в плотности одной и другой разновидностей воды превышает 10%, и поэтому возможны условия, когда переход в твердое состояние при охлаждении происходит вначале у тяжелой воды, а затем у обычной.

Итак, поскольку есть заметная разница в плотности между тяжёлой и обычной водой, то именно плотность, а также агрегатное состояние и могут служить наиболее чувствительными критериями в поисках возможных месторождений тяжелой воды – ведь эти критерии связаны с температурой окружающей среды. Как известно, окружающая среда наиболее “контрастна” в высоких широтах планеты. Атмосферные осадки влияют на распределение дейтерия по водоемам планеты, однако они никак не влияют на глобальный процесс образования дейтерия, которое убыстряется под воздействием вечной мерзлоты, одновременно идет ассоциация молекул воды. Наконец, наступает критический момент максимальной плотности – температура воды всюду чуть ниже +4°С. И тогда в придонной зоне на некоторых участках интенсивно намораживается рыхлый подводный лед. В отличие от обычного льда он не имеет правильной кристаллической решетки, у него иная структура. Центры его кристаллизации различны: камни, коряги и разные неровности, причем не обязательно лежащие на дне и связанные с мерзлым грунтом. Появляется рыхлый лед на реках глубоких, со спокойным – ламинарным – течением. Подводное ледообразование обычно заканчивается тем, что льдины всплывают на поверхность, хотя в это время никакого другого льда нет. Подводный лед иногда появляется и летом.

Возникает вопрос: что это за “вода в воде”, которая меняет свое агрегатное состояние, когда установившаяся температура в реке слишком высока для того, чтобы в лед превращалась обычная вода, чтобы, как говорят физики, произошел фазовый переход? Нужно помнить, что тяжелая вода неотличима от обычной, однако потребление ее внутрь организма может вызвать тяжелые отравления. К слову сказать, местные жители высоких широт не употребляют речной лед для приготовления пищи – только озерный лед или снег.

Похожие публикации