Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Простой драйвер светодиодов на одной микросхеме. Микросхемы драйверов сверхъярких светодиодов

Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света, а срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов.

Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.

Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это , но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.

Электронное устройство (по сути — стабилизированный импульсный преобразователь) подбирается под необходимую нагрузку, будь то набор отдельных светодиодов, собранных в последовательную цепочку, или параллельный набор таких цепочек, либо может быть лента или вообще один мощный светодиод.

Стабилизированный источник питания постоянного напряжения хорошо подойдет , LED-линеек, или для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно, — то есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.

Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, - потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, - и готово.

Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.

Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы, однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), - поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.

Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.

Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.

Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.

Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.

Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — , со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.

Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.

Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.

Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.

На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.

Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.

Андрей Повный

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.


Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Сегодня едва ли можно найти электронное устройство, в котором не использовались бы светоизлучающие диоды. Эти приборы нашли широкое применение в различных устройствах: от карманного фонарика до OLED-дисплеев, которые, по прогнозам экспертов, в скором времени придут на смену ЖК- и плазменным панелям. Все шире используются светодиоды и в системах уличного и домашнего освещения. Это объясняется рядом достоинств, присущих светодиодам, среди которых: высокий КПД, высокая удельная яркость и относительно низкая стоимость.

Однако, светодиод — это прибор, очень чувствительный к качеству питающего напряжения. Чтобы максимально использовать все возможности светодиодов, необходимо грамотно организовать систему питания. В противном случае возможно значительное уменьшение срока службы прибора или даже выход его из строя. Кроме того, все более широкое внедрение энергосберегающих технологий требует обеспечение высокого КПД схемы питания. Таким образом, очевидно, что создание оптимальной системы питания светодиодов — сложная схемотехническая задача. В портативных устройствах с батарейным питанием, таких как ноутбуки, КПК, мобильные телефоны, фотоаппараты, MP3-плееры, эта проблема стоит особенно остро из-за ограниченного времени работы питающего элемента. Дополнительными ограничивающими особенностями данного класса устройств являются их компактные размеры и отсутствие необходимости активного охлаждения.

Компания Texas Instruments предлагает широкое семейство драйверов светодиодов для использования в приборах различного назначения, таких как: осветительные светодиоды большой мощности, мониторы, малогабаритные приборы и т.д. На сайте производителя можно найти множество примеров использования данных приборов.

Как видно из таблицы 1 приборы, предлагаемые компанией TI, позволяют решать широкий спектр задач, возникающих при проектировании портативной техники: организация схемы питания одного светодиода (например, индикатор включения), групп светодиодов (подсветка клавиатуры) или OLED-панелей (подсветка ЖК-дисплеев).

Таблица 1. Микросхемы для использования в портативной аппаратуре

Наиме-
нование
Входное
напря-
жение,
В
Тип Ток,
потреб-
ляе-
мый
в
актив-
ном
ре-
жиме,
мА
Ток,
потреб-
ляе-
мый
в спя-
щем
ре-
жиме,
мкА
Рабо-
чая
час-
тота,
кГц
Макси-
маль-
ный
ком-
мути-
руе-
мый
ток, А
За-
щита
от
пере-
напря-
же-
ния,
В
Синх-
рон-
ный
ре-
жим
ра-
боты
Макси-
маль-
ный
КПД,%
Отклю-
чение
наг-
рузки
в спя-
щем
ре-
жиме
Корпус
TPS61029 0,9…6,5 Повы-
шающий
0,025 0,1 720 1,8 Есть Да 96 Да SON-10
TPS61070 0,9…5,5 Повы-
шающий
0,019 0,05 1200 0,7 Нет Да 90 Да SOT-6
TPS61050 2,5…5,5 Повы-
шающий
8,5 0,3 2000 1,5 5,8 Да 96 Да SON-10/
DSBGA-12
TPS61080 2,5…6,0 Повы-
шающий
6 1 1200 0,5/1,3 27 Нет 87 Да QFN-10
TPS61140 3,0…6,0 Повы-
шающий
0,125…2 1,5 1200 0,7 28 Нет 85 Да QFN-10
TPS61160 2,7…18 Повы-
шающий
1,5 1 1200 1,2 38 Нет 80 Нет SOT-6
TPS62050 2,7…10 Повы-
шающий
0,012 1,5 1000 1,4 Нет Да 95 Нет MSOP-10
TPS63000 1,8…5,5 Повы-
шающий
0,04 0,01 1500 1,8 Нет Да 95 Да QFN-10

Высокая рабочая частота приборов позволяет значительно уменьшить габариты используемых катушек индуктивности, что обеспечивает уменьшение общих габаритов импульсных преобразователей.

Большинство подобных микросхем построено на основе повышающего преобразователя (известного также как преобразователя второго типа). Типичная схема такого преобразователя состоит из накопительной катушки индуктивности, силового транзистора, выпрямительного диода и фильтрующего конденсатора (см. рис. 1а).


Рис. 1. Упрощенная схема преобразователя с диодом Шоттки (а) и синхронного преобразователя (б); (СУ-система управления)

Достоинством подобной схемы является простота и относительно высокий КПД.

КПД такого преобразователя можно дополнительно повысить, применив вместо выпрямительного диода МОП-транзистор, работающий синхронно с основным транзистором. Повышение КПД связано с тем, что такой транзистор имеет большую проводимость канала, чем диод, следовательно, имеет меньшее падение напряжения при одинаковых рабочих токах. Кроме того, данный вариант позволяет формировать на выходе более низкое напряжение. Такая схема получила название синхронный преобразователь (см. рис. 1б).

У такого варианта схемы есть серьезный недостаток — гальваническая связь между входом и выходом. Однако, при использовании в приборах с автономным питанием он является несущественным.

Система управления (СУ) таких преобразователей обычно строится на основе широтно-импульсного модулятора (ШИМ). Он состоит из генератора пилообразного напряжения, источника опорного напряжения и схемы сравнения.

Т.к. приборы этой серии работают на достаточно большой частоте, при проектировании печатной платы устройства следует учитывать некоторые ограничения. Разработчику необходимо минимизировать расстояние между микросхемой преобразователя и внешней катушкой индуктивности, использовать индуктивности с магнитным экранированием, в качестве фильтрующих конденсаторов использовать керамические конденсаторы на основе керамики марки NPO (в крайнем случае, X5R). Это позволит свести уровень помех к минимуму и обеспечит надежную работу разрабатываемого устройства.

Остановимся более подробно на особенностях драйверов, используемых в портативной технике.

Драйверы, предназначенные для подключения одного светодиода

Данные микросхемы могут быть использованы для подключения различных одиночных светодиодов в устройствах, питаемых от низковольтных источников (батарейка, аккумулятор).

TPS61029

Микросхемы обеспечивают питание одного светодиода от одной до трех алкалайновых, никель-кадмиевых батареек, одного литий-ионного или литий-полимерного аккумулятора.

Повышающий преобразователь работает на фиксированной частоте. В его основе лежит ШИМ-контроллер, работающий в синхронном режиме, что позволяет увеличить КПД. Величина выходного напряжения задается внешним резистивным делителем, но по умолчанию она определяется внутренним резистором. В выключенном состоянии нагрузка полностью отключается от батареи. Микросхема снабжена защитой от перегрева. В том случае, когда внешний резистивный делитель (R3R4) не устанавливается, величина выходного напряжения задается внутренним резистором и достигает максимального значения (см. рис. 2).


Рис. 2.

Микросхема снабжена схемой контроля уровня напряжения на батарее: как только уровень напряжения на батарее упадет ниже заданного, микросхема сформирует сигнал (LBO), который можно использовать, например как сигнал сброса. Уровень контролируемого напряжения задается внешним резистивным делителем.

Подробная методика расчета номиналов внешних компонентов приведена в справочном листе на микросхему.

К недостаткам микросхемы можно отнести относительно большое количество внешних элементов.

TPS61070

Устройство и назначение данного драйвера аналогично микросхеме TPS61029, но он рассчитан на несколько меньший ток нагрузки. Рабочая частота выше почти в 2 раза, что позволяет применять индуктивность меньших габаритов. В микросхеме отсутствует узел для контроля уровня напряжения батареи и схема защиты от перенапряжения. Все это значительно уменьшает габариты устройства. Эта микросхема является наилучшим решением для самых простых и недорогих портативных устройств.

TPS61050

Устройство представляет собой повышающий преобразователь высокой мощности, конфигурируемый по I 2 C-интерфейсу. Драйвер основан на высокочастотном синхронном повышающем ШИМ-преобразователе. Для работы требуется минимум внешних компонентов. Производитель утверждает, что несмотря на внушительную для данного класса приборов мощность (максимальный выходной ток 1,5 А) всю схему преобразователя можно разместить на плате, размером 5х5 мм, что, впрочем, неудивительно, ведь частота преобразования составляет 5 МГц, при КПД 96%.

Хотя в каталоге производителя эта микросхема числится как драйвер светодиодов, его мощности вполне достаточно для питания и других требовательных к качеству питанию компонентов устройства.

Эта микросхема является прекрасным решением для использования в таких устройствах как, например, handsfree и bluetooth-гарнитурах, MP3-плеерах. Возможность управления по I 2 C-интерфейсу позволяет конфигурировать такой параметр, как громкость, практически без использования дополнительных средств.

Интерфейс I 2 C, реализованный в данной микросхеме и работающий со скоростью до 400 кБ/с позволяет:

  • устанавливать следующие режимы работы: спящий режим, режим стабилизации выходного тока, режим стабилизации выходного напряжения;
  • управлять яркостью светодиода (в непрерывном и импульсном режимах);
  • управлять выходным напряжением;
  • настраивать таймер мягкого старта.

В спящем режиме ток, потребляемый микросхемой, составляет 0,3 мкА. При этом вывод LED микросхемы отключается от нагрузки для предотвращения дополнительных утечек тока через нагрузку.

Микросхема снабжена защитой от перенапряжения и перегрева.

Как и любому другому I 2 C-slave устройству, TPS61050 требуется I 2 C-master устройство, которое при включении производил бы конфигурирование (выделял бы I 2 C-адрес). В противном случае параметрическое конфигурирование микросхемы становиться невозможным.

Наличие встроенного АЦП позволяет мастеру получать данные о состоянии нагрузки. Так же как и при конфигурировании это обеспечивается посредством обмена данными с внутренними регистрами по шине I 2 C.

Микросхемы, предназначенные для подключения нескольких светодиодов

Данные приборы могут быть использованы для подключения групп светодиодов, например, для реализации подсветки клавиатуры в мобильном телефоне.

TPS61160

Этот прибор является драйвером светодиодов с ШИМ-контролем яркости. Содержит интегрированный силовой транзистор и способен питать до десяти последовательно включенных светодиодов. Частота преобразования 600 кГц. Ток через светодиоды задается внешним резистором Rset (см. рис. 3).


Рис. 3.

Ток через светодиоды можно изменять динамически через вывод Ctrl, используя однопроводной последовательный интерфейс Easyscale TM . Можно также управлять яркостью, подав на вывод Ctrl ШИМ-сигнал. В этом случае яркость будет зависеть от коэффициента заполнения. В любом режиме ток через светодиоды не будет иметь резких бросков и прибор не наводит помехи в диапазоне частот.

Микросхема выполнена в 2х2 мм корпусе, что в сочетании с минимальным количеством внешних компонентов и высокой частотой преобразования позволяет использовать ее в миниатюрных устройствах, таких как карманные фонарики, мобильные телефоны, GPS-навигаторы и т.д.

TPS61165

Данная микросхема отличается от вышеописанного прибора большей частотой преобразования, что позволяет уменьшить габариты устройства.

Микросхема является синхронным понижающим преобразователем и обеспечивает питание от одной до пяти литий-ионных, никель-кадмиевых или алкалайновых батарей.

Драйвер TPS62050 построен на основе синхронного ШИМ с интегрированными силовыми МДП-транзисторами. Частота преобразования составляет 850 кГц, но есть возможность синхронизации от внешнего генератора с частотой от 600 до 1200 кГц.

В обычном режиме преобразователь работает на фиксированной частоте, изменяется скважность импульсов ШИМ (от 100 до 10%). Микросхема может быть переведена в режим пониженного потребления энергии. Переход в режим пониженного потребления производится автоматически на основании мониторинга выходного тока. В режиме пониженного потребления энергии КПД преобразователя оказывается несколько больше, но этот режим не рекомендован к использованию в чувствительных к помехам приложениях. В случае использования внешнего генератора переход в режим пониженного потребления невозможен.

В спящем режиме микросхема потребляет ток менее 2 мкА, что позволяет увеличить срок службы батарей.

Микросхема снабжена защитой от перегрева и перегрузки по току. Минимальное количество внешних компонентов позволяет сократить габариты конечного устройства.

Также весьма полезным может оказаться детектор уровня напряжения на батарее. Уровень контролируемого напряжения задается резистивным делителем, подключенным к выводу LBI. Следует учитывать, что система контроля уровня напряжения батареи включается спустя 500 мкс после включения прибора. Типовая схема включения микросхемы TPS62052 показана на рисунке 4.


Рис. 4.

TPS63000

Микросхема представляет собой решение для питания от одной до трех литий-ионных, никель-кадмиевых или алкалайновых батарей.

Драйвер построен на синхронном ШИМ — контроллере. Выходной ток может достигать значения 1200 мА. КПД преобразователя составляет 96%. Имеет режим пониженного энергопотребления, в который переходит автоматически.

Выходное напряжения задается внешним резистивным делителем. При выключении нагрузка полностью отключается от батареи.

TPS63000 содержит четыре встроенных полевых транзистора. Из-за большого тока через ключи возможно возникновение смещения потенциала земли. Поэтому при проектировании печатной платы производитель рекомендует использовать две отдельные шины земли — силовую и сигнальную (которые следует затем соединить в одной точке). Силовые ключи подключены к PGND.

Микросхема имеет защиту от перегрева и короткого замыкания. Предусмотрен режим мягкого старта.

Данный прибор будет полезен разработчикам мощной портативной аппаратуры, питающейся от нескольких батарей.

Драйверы OLED-панелей

К этим приборам относятся микросхемы, разработанные специально для устройств, имеющих в своем составе OLED-панели. Но это не ограничивает их область применения — они могут с успехом использоваться в любых устройствах, требующих наличия микросхем с такими параметрами.

TPS61080

Данная микросхема является повышающим асинхронным ШИМ-преобразователем. Содержит интегрированные силовые ключи. Имеется система защиты от короткого замыкания: в этом случае силовой ключ отключает нагрузку от батареи. В выключенном состоянии нагрузка полностью отключается от батареи. Выходное напряжение достигает 27 В.

Рабочая частота (600 или 1200 кГц) задается на выводе FSW. Режим с частотой 600 кГц более эффективен с точки зрения увеличения КПД, однако рабочая частота 1200 кГц позволяет использовать индуктивности меньших габаритов. Рекомендованный производителем режим — 1200 кГц.

Микросхема имеет защиту от перенапряжения и перегрева.

Для предотвращения эффекта смещения потенциала земли, производитель рекомендует делать две раздельных шины земли для силовых и сигнальных цепей.

Данная микросхема может найти применение для питания OLED-панелей, организации подсветки ЖК-матриц и для питания любой электронной аппаратуры от нескольких батарей или через интерфейс USB.

TPS61140

Микросхема представляет собой повышающий преобразователь с двумя выходами (один выход токовый, другой выход — напряжение). Ток и напряжения задаются отдельно при помощи внешних резисторов. Микросхема имеет отдельные управляющие выводы для каждого канала, что позволяет использовать оба канала одновременно или независимо друг от друга.

Когда используются только источник напряжения, преобразователь работает в режиме ЧИМ (частотно-импульсная модуляция). Это позволяет увеличить КПД преобразователя. Если используется токовый выход, для увеличения выходного тока микросхема работает в режиме ШИМ (частота преобразования 1,2 МГц).

Микросхема имеет встроенные силовые ключи. Для применения микросхемы требуется минимум внешних компонентов.

Предусмотрена защита от перегрева и перенапряжения, а также схема контроля уровня заряда батареи.

Микросхема является оптимальным решением специально для питания OLED-панелей, подсветки ЖК-матриц в портативных устройствах, таких как мобильные телефоны, цифровые камеры, КПК. Второй канал микросхемы может быть использован для питания других элементов схемы. Типовая схема включения микросхемы TPS61140 показана на рисунке 5.


Рис. 5.

Для большинства вышеописанных приборов компания Texas Instruments предлагает оценочные модули. Модули оснащены всем необходимым для ознакомления с работой предлагаемых микросхем. В состав модуля входит микросхема драйвера с внешними компонентами, набор переключателей, позволяющих менять режимы работы, светодиоды для визуального контроля работы устройства. Такие модули позволяют изучить основные особенности предлагаемых драйверов, собрать с их помощью макет устройства и убедиться в его работоспособности. Внешний вид оценочного модуля TPS61050EVM показан на рисунке 6.

Рис. 6.

Микросхемы, предназначенные для использования в светодиодных табло

Данные микросхемы могут найти применение в информационных панелях, панелях типа «бегущая строка» и других устройствах с большим количеством светодиодов. Перечень микросхем для использования в светодиодных табло приведен в таблице 2.

Таблица 2. Микросхемы для использования в светодиодных табло

Наимено-
вание
Особенности
TLC59116 Имеет 16 независимых, каналов по 100 мА каждый. Частота преобразования — 1 МГц. Имеет встроенный интерфейс I 2 C. Дискретное изменение яркости — 256 оттенков. Групповой режим мерцания — мерцание на частоте 24 Гц с дискретным изменением скважности от 0 до 99,6% (всего 256 режимов). Индивидуальный режим мерцания
TLC5916/17 8 независимых каналов по 120 мА каждый. Имеет дискретно настраиваемый, 256-шаговый, усилитель тока, общий для всех каналов
TLC5923 16 каналов, по 80 мА каждый. Имеет 128-уровневую коррекцию тока для каждого канала. Управляется по последовательному интерфейсу. Имеет систему контроля наличия светодиода
TLC5924 16 каналов, по 100 мА каждый. 128-уровневая коррекция тока для каждого канала
TLC5940 16 каналов, по 100 мА каждый. 128-уровневая коррекция тока для каждого канала. ШИМ-конторль яркости. Встроенная память EEPROM
TLC5941 16 каналов, по 120 мА каждый. 128-уровневая коррекция тока для каждого канала
TLC5942 16 каналов, по 50 мА каждый. 128-уровневая коррекция тока для каждого канала. 12-битный ШИМ-контроль яркости
TLC5943 16 каналов, по 50 мА каждый. 128-уровневая коррекция тока для каждого канала. 16-битный ШИМ-контроль яркости
TLC5945 16 каналов, по 50 мА каждый. 128-уровневая коррекция тока для каждого канала. 16-битный ШИМ-контроль яркости. Низкая задержка изменения выходного состояния
PTR08060W Токозадающий драйвер для светодиодов. Выходной ток 6 А. Входное напряжение 4,5…14 В. Без гальванической развязки между входом и выходом
PTR08100W Токозадающий драйвер для светодиодов. Выходной ток 10 А. Входное напряжение 4,5…14 В. Без гальванической развязки между входом и выходом
PTH12020W Токозадающий драйвер для светодиодов. Выходной ток 18 А. Входное напряжение 12 В. Без гальванической развязки между входом и выходом

Сегодня светоизлучающие диоды все чаще применяются для систем освещения, постепенно вытесняя из этой области приборы других классов, такие как лампы накаливания, люминесцентные лампы, галогенные лампы. Данные приборы могут быть использованы для подсветки архитектурных сооружений, внутренних помещений, в карманных фонариках и т.д.

Разумеется, здесь также требуется применение соответствующих драйверов. Для этих целей подходят многие приборы, описанные выше, но компания TI разработала ряд микросхем, предназначенных для работы именно в осветительных системах. В таблице 3 перечислены микросхемы, специально предназначенные для использования в осветительных системах.

Таблица 3. Микросхемы для использования в осветительных системах

В таблице 4 приведено описание некоторых микросхем драйверов светодиодов для применения в автоэлектронике.

Таблица 4. Микросхемы для использования в автоэлектронике

Заключение

Большое разнообразие драйверов светодиодов, предлагаемых компанией Texas Instruments, обеспечивает оптимальное решением для любых видов портативной техники и осветительных систем. Это достигается за счет удачного сочетания параметров этих устройств и приемлемой цены.

Высокая надежность, присущая всем продуктам компании, обеспечивает длительный срок службы проектируемых устройств. Высокий КПД преобразования позволяет увеличить время работы батарей. Высокая частота преобразования в сочетании с малыми габаритами микросхем и минимальным количеством внешних компонентов позволяет создавать компактные устройства.

Кроме того следует отметить, что ни один производитель не предлагает такого разнообразия микросхем данного назначения, как Texas Instruments.

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше.

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:


Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока I cp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про .

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора R ON .

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

Наверное, каждый, даже начинающий радиолюбитель знает, что для того чтобы подключить обычный светодиод к источнику питания нужен всего один резистор. А как быть если светодиод мощный? Ватт так на 10. Как быть тогда?
Я вам покажу способ сделать простой драйвер для мощного светодиода всего из двух компонентов.

Для стабилизатора-драйвера нам понадобиться:
1. Резистор – .
2. Микросхема – LM317 – .


LM317 – это микросхема стабилизатор. Отлично подходит для конструирования регулируемых источников питания или драйверов для питания светодиодов, как в нашем случае.

Достоинства LM317

  • Диапазон стабилизации напряжения от 1,7 (включая напряжение светодиода – 3 В) до 37 В. Отличная характеристика, для автомобилистов: яркость не будет плавать на любых оборотах;
  • Выходной ток до 1,5 можно подключать несколько мощных светодиодов;
    Стабилизатор имеет встроенную систему защиты от перегрева и короткого замыкания.
  • Минусовое питание светодиода в схеме включения берется от источника питания, поэтому при креплении к корпусу автомобиля уменьшается количество монтажных проводов, а корпус может играет роль большого теплоотвода для светодиода.

Схема драйвера для мощного светодиода


Я буду подключать светодиод на 3 Ватта.В итоге нам нужно будет рассчитать сопротивление под наш светодиод. Светодиод мощностью 1 Вт потребляет 350 мА, а 3-х ваттный – 700 мА (можно посмотреть в даташит). Микросхема LM317 – имеет опорное напряжение стабилизатора – 1,25 – это число постоянное. Его нужно поделить на ток и получиться сопротивление резистора. То есть: 1,25 / 0,7 = 1,78 Ом. Ток берем в амперах. Выбираем ближайший резистор по сопротивлению, так как резисторов сопротивлением 1,78 не бывает. Берем 1,8 и собираем схему.

Если мощность вашего светодиода превышает 1 Вт, то микросхему необходимо установить на радиатор. Вообще LM317 рассчитана на ток до 1,5.
Питать нашу схему можно напряжение от 3 до 37 вольт. Согласитесь, солидный диапазон питания получается. Но чем больше напряжение, тем больше греется микросхема, учтите это.

Похожие публикации